

# ETSI EN 300 328 V2.2.2 (2019-07)

# **TEST REPORT**

For

# Xiamen Milesight IoT Co., Ltd.

4/F, NO. 63-2 Wanghai Road, 2nd Software Park, Xiamen, China

| Tested Model: UG65-L00E-868M-EA     |
|-------------------------------------|
| Multiple Models: UG65-L00E-868M,    |
| UG65-868M-EA, UG65-868M,            |
| UG65-L04EU-868M-EA, UG65-L04EU-868M |
|                                     |

| Report Type:        | Product Type:                                                                                                                          |                                                                                                                                                  |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Original Report     | $\mathbf{X}$                                                                                                                           | LoRaWAN Gateway                                                                                                                                  |  |
| Report Number:      | RXM200911053-                                                                                                                          | 22A                                                                                                                                              |  |
| Report Date:        | 2021-02-03                                                                                                                             |                                                                                                                                                  |  |
|                     | Nancy Wang                                                                                                                             |                                                                                                                                                  |  |
| <b>Reviewed By:</b> | RF Engineer                                                                                                                            |                                                                                                                                                  |  |
| Prepared By:        | Bay Area Compli<br>6/F., West Wing,<br>Building, Shihua<br>Shenzhen, Guang<br>Tel: +86-755-333<br>Fax: +86-755-333<br>www.baclcorp.com | ance Laboratories Corp. (Shenzhen)<br>Third Phase of Wanli Industrial<br>Road, Futian Free Trade Zone,<br>dong, China<br>20018<br>320008<br>m.cn |  |

**Note:** BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '\*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Report No.: RXM200911053-22A

Bay Area Compliance Laboratories Corp. (Shenzhen)

# **TABLE OF CONTENTS**

| GENERAL INFORMATION                                                                | 3                  |
|------------------------------------------------------------------------------------|--------------------|
| PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)                                 |                    |
| OBJECTIVE                                                                          |                    |
| Test Methodology                                                                   |                    |
| MEASUREMENT UNCERTAINTY                                                            | 4                  |
| SYSTEM TEST CONFIGURATION                                                          | 5                  |
| DESCRIPTION OF TEST CONFIGURATION                                                  | 5                  |
| EUT EXERCISE SOFTWARE                                                              | 5                  |
| SPECIAL ACCESSORIES                                                                | 5                  |
| EQUIPMENT MODIFICATIONS                                                            | 5                  |
| SUPPORT EQUIPMENT LIST AND DETAILS                                                 |                    |
| EXTERNAL I/O CABLE                                                                 | 0                  |
| BLOCK DIAGRAM OF TEST SETOF                                                        |                    |
| SUMMARY OF TEST RESULTS                                                            |                    |
| TEST EQUIPMENT LIST                                                                |                    |
|                                                                                    |                    |
| ETSI EN 300 328 V2.2.2 (2019-07) §4.3.2.9 – TRANSMITTER UNWANTED EMISSIC<br>DOMAIN | ON IN THE SPURIOUS |
| APPLICABLE STANDARD                                                                |                    |
| TEST PROCEDURE                                                                     | 10                 |
| TEST DATA                                                                          | 11                 |
| ETSI EN 300 328 V2.2.2 (2019-07) §4.3.2.10 - RECEIVER SPURIOUS EMISSIONS           |                    |
| APPLICABLE STANDARD                                                                |                    |
| Test Procedure                                                                     |                    |
| TEST DATA                                                                          |                    |
| ETSI EN 300 328 V2.2.2 (2019-07) §4.3.2.11 - RECEIVER BLOCKING                     | 15                 |
| APPI ICABLE STANDARD                                                               | 15                 |
| Test Procedure                                                                     |                    |
| TEST DATA                                                                          | 19                 |
| EXHIBIT B - EUT PHOTOGRAPHS                                                        | 20                 |
| EXHIBIT C - TEST SETUP PHOTOGRAPHS                                                 | 21                 |
| RADIATED SPURIOUS EMISSIONS VIEW (BELOW 1GHZ, FOR ADAPTER)                         |                    |
| RADIATED SPURIOUS EMISSIONS VIEW (BELOW 1GHZ, FOR POE)                             | 21                 |
| RADIATED SPURIOUS EMISSIONS VIEW (ABOVE 1GHZ)                                      |                    |
| APPENDIX                                                                           | 23                 |
| APPENDIX A: RECEIVER BLOCKING                                                      |                    |

# **GENERAL INFORMATION**

#### **Product Description for Equipment under Test (EUT)**

| Product                | LoRaWAN Gateway                                                                                      |
|------------------------|------------------------------------------------------------------------------------------------------|
| Tested Model           | UG65-L00E-868M-EA                                                                                    |
| Multiple Models        | UG65-L00E-868M, UG65-868M-EA, UG65-868M,<br>UG65-L04EU-868M-EA, UG65-L04EU-868M                      |
| Model Differences      | Refer to the DoS letter                                                                              |
| Frequency Range        | Wi-Fi: 2412~2472MHz/2422-2462MHz                                                                     |
| Maximum EIRP           | 12.16dBm                                                                                             |
| Modulation Technique   | Wi-Fi: DSSS, OFDM                                                                                    |
| Antenna Specification* | 1.5dBi (provided by the manufacturer)                                                                |
| Voltage Range          | DC12.0V from adapter or DC 48V from POE                                                              |
| Date of Test           | 2020-10-11 to 2021-02-03                                                                             |
| Sample serial number   | RXM200911053-RF-S1(Assigned by BACL, Shenzhen)                                                       |
| Received date          | 2020-09-11                                                                                           |
| Sample/EUT Status      | Good condition                                                                                       |
| Adapter information    | Model: OH-1015A1201000U3-VDE<br>Input: AC 100-240V, 50/60Hz, 0.35A<br>Output: DC 12.0V, 1.0 A, 12.0W |

#### Objective

This test report is in accordance with ETSI EN 300 328 V2.2.2 (2019-07), Wideband transmission systems; Data transmission equipment operating in the 2.4 GHz band; Harmonised Standard for access to radio spectrum

The objective is to determine the compliance of EUT with ETSI EN 300 328 V2.2.2 (2019-07).

#### **Test Methodology**

All measurements contained in this report were conducted with ETSI EN 300 328 V2.2.2 (2019-07).

## **Measurement Uncertainty**

| Parameter                      | Flab        |
|--------------------------------|-------------|
| Occupied Channel Bandwidth     | ±5%         |
| RF output power, conducted     | ±0.73dB     |
| Unwanted Emission, conducted   | ±1.6dB      |
| Below 1GHz emissions, radiated | ±4.75dB     |
| Above 1GHz emissions, radiated | ±4.88dB     |
| Temperature                    | ±1°C        |
| Supply voltages                | $\pm 0.4\%$ |
| Time                           | ±1%         |

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

# SYSTEM TEST CONFIGURATION

#### **Description of Test Configuration**

For 802.11b, 802.11g and 802.11n-HT20 mode, 13 channels are provided to testing:

| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
|---------|--------------------|---------|--------------------|
| 1       | 2412               | 8       | 2447               |
| 2       | 2417               | 9       | 2452               |
| 3       | 2422               | 10      | 2457               |
| 4       | 2427               | 11      | 2462               |
| 5       | 2432               | 12      | 2467               |
| 6       | 2437               | 13      | 2472               |
| 7       | 2442               | 1       | /                  |

EUT was tested with Channel 1, 7 and 13.

For 802.11n-HT40 mode, 9 channels are provided to testing:

| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
|---------|--------------------|---------|--------------------|
| 1       | 2422               | 6       | 2447               |
| 2       | 2427               | 7       | 2452               |
| 3       | 2432               | 8       | 2457               |
| 4       | 2437               | 9       | 2462               |
| 5       | 2442               | /       | /                  |

EUT was tested with Channel 1, 5 and 9.

#### **EUT Exercise Software**

"PUTTY"\* exercise software was used. The software was provided by the manufacturer.

#### **Special Accessories**

No special accessory.

#### **Equipment Modifications**

No modification was made to the EUT.

# Support Equipment List and Details

| Manufacturer                                    | Description | Model         | Serial Number |
|-------------------------------------------------|-------------|---------------|---------------|
| SHENZHEN GOSPELL DIGITAL<br>TECHNOLOGY CO.,LTD. | POE         | G0720-480-050 | G0720-480-050 |

#### External I/O Cable

| Cable Description                   | Length (m) | From/Port | То       |
|-------------------------------------|------------|-----------|----------|
| Un-shielding Un-Detachable AC Cable | 1.0        | Socket    | AC Mains |
| Un-shielding Un-Detachable DC Cable | 2.5        | Adapter   | EUT      |
| Un-shielding Detachable AC Cable    | 1.2        | POE       | AC Mains |
| Un-shielding Detachable RJ45 Cable  | 3.0        | POE       | EUT      |

#### Bay Area Compliance Laboratories Corp. (Shenzhen)

Report No.: RXM200911053-22A

#### **Block Diagram of Test Setup**

# For Adapter:



#### For POE:



# SUMMARY OF TEST RESULTS

| ETSI EN 300 328<br>V2.2.2 (2019-07) | Description of Test                                      | Test Result      |
|-------------------------------------|----------------------------------------------------------|------------------|
| §4.3.2.2                            | RF output power                                          | Compliance*      |
| § 4.3.2.3                           | Power Spectral Density                                   | Compliance*      |
| § 4.3.2.4                           | Duty Cycle, Tx-sequence, Tx-gap                          | Not Applicable   |
| § 4.3.2.5                           | Medium Utilization (MU) factor                           | Not Applicable   |
| § 4.3.2.6                           | Adaptivity                                               | Compliance*      |
| § 4.3.2.7                           | Occupied Channel Bandwidth                               | Compliance*      |
| § 4.3.2.8                           | Transmitter unwanted emissions in the out-of-band domain | Compliance*      |
| § 4.3.2.9                           | Transmitter unwanted emissions in the spurious domain    | Compliance       |
| § 4.3.2.10                          | Receiver spurious emissions                              | Compliance       |
| § 4.3.2.11                          | Receiver Blocking                                        | Compliance       |
| § 4.3.2.12                          | Geo-location capability                                  | Not Applicable** |

Note:

The supplier declared that the equipment is adaptive equipment

Compliance\*: The EUT has a certified Wi-Fi module (Model: F89FTSM13-W3) and its antenna gain is less than the original. So the related test items can refers to the module report: NTC1709097EV00, which was issued by Dongguan Nore Testing Center Co., Ltd. on November 20, 2017.

Not Applicable – This item only for non-adaptive equipment Not Applicable\*\* –The supplier declared that the equipment has no this function.

# **TEST EQUIPMENT LIST**

| Manufacturer           | Description                            | Model                           | Serial<br>Number          | Calibration<br>Date | Calibration<br>Due Date |  |
|------------------------|----------------------------------------|---------------------------------|---------------------------|---------------------|-------------------------|--|
| Radiated Emission Test |                                        |                                 |                           |                     |                         |  |
| R&S                    | EMI Test Receiver                      | ESR3                            | 102455                    | 2020/08/04          | 2021/08/03              |  |
| Sonoma instrument      | Pre-amplifier                          | 310 N                           | 186238                    | 2020/08/04          | 2021/08/03              |  |
| Sunol Sciences         | Broadband Antenna                      | JB1                             | A040904-1                 | 2017/12/22          | 2020/12/21              |  |
| COM-POWER              | Dipole Antenna                         | AD-100                          | 721027                    | NCR                 | NCR                     |  |
| Unknown                | Cable 2                                | RF Cable 2                      | F-03-EM197                | 2019/11/29          | 2020/11/28              |  |
| Unknown                | Cable                                  | Chamber<br>Cable 1              | F-03-EM236                | 2019/11/29          | 2020/11/28              |  |
| Rohde & Schwarz        | Spectrum Analyzer                      | FSV40-N                         | 102259                    | 2020/08/04          | 2021/08/03              |  |
| COM-POWER              | Pre-amplifier                          | PA-122                          | 181919                    | 2019/11/29          | 2020/11/28              |  |
| Sunol Sciences         | Horn Antenna                           | DRH-118                         | A052604                   | 2017/12/22          | 2020/12/21              |  |
| A.H.System             | Horn Antenna                           | SAS-200/571                     | 135                       | 2018/09/01          | 2021/08/31              |  |
| Insulted Wire Inc.     | RF Cable                               | SPS-2503-<br>3150               | 02222010                  | 2019/11/29          | 2020/11/28              |  |
| Unknown                | RF Cable                               | W1101-EQ1<br>OUT                | F-19-EM005                | 2019/11/29          | 2020/11/28              |  |
| SNSD                   | Band Reject filter                     | BSF2402-<br>2480MN-<br>0898-001 | 2.4G filter               | 2020/04/20          | 2021/04/19              |  |
|                        | RF                                     | Conducted Tes                   | t                         |                     |                         |  |
| Agilent                | Signal Generator                       | N5183A                          | MY51040755                | 2020/12/04          | 2021/12/03              |  |
| Rohde & Schwarz        | SPECTRUM<br>ANALYZER                   | FSU26                           | 200120                    | 2020/04/03          | 2021/04/02              |  |
| Agilent                | MXG Vector Signal<br>Generator         | N5182B                          | MY53051503                | 2020/08/04          | 2021/08/03              |  |
| Rohde & Schwarz        | Signal and Spectrum<br>Analyzer        | FSV40                           | 101473                    | 2020/08/04          | 2021/08/03              |  |
| Tonscend Corporation   | RF control Unit                        | JS0806-2                        | 19D8060154                | 2020/08/04          | 2021/08/03              |  |
| Rohde & Schwarz        | Wideband Radio<br>Communication Tester | CMW500                          | 1201.002K50-<br>146520-wh | 2020/08/04          | 2021/08/03              |  |

\* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

# ETSI EN 300 328 V2.2.2 (2019-07) §4.3.2.9 – TRANSMITTER UNWANTED EMISSION IN THE SPURIOUS DOMAIN

#### **Applicable Standard**

In the present document, transmitter unwanted emissions in the spurious domain are emissions outside the allocated band and outside the Out-of-band Domain as indicated in figure 3 when the equipment is in Transmit mode.

The transmitter unwanted emissions in the spurious domain shall not exceed the values given in table 12.

In case of equipment with antenna connectors, these limits apply to emissions at the antenna port (conducted). For emissions radiated by the cabinet or emissions radiated by integral antenna equipment (without antenna connectors), these limits are e.r.p. for emissions up to 1 GHz and as e.i.r.p. for emissions above 1 GHz.

| Frequency Range     | Maximum power<br>e.r.p (≤1 GHz)<br>e.i.r.p (≥1 GHz) | Bandwidth |
|---------------------|-----------------------------------------------------|-----------|
| 30 MHz to 47 MHz    | -36 dBm                                             | 100 kHz   |
| 47 MHz to 74 MHz    | -54 dBm                                             | 100 kHz   |
| 74 MHz to 87,5 MHz  | -36 dBm                                             | 100 kHz   |
| 87,5 MHz to 118 MHz | -54 dBm                                             | 100 kHz   |
| 118 MHz to 174 MHz  | -36 dBm                                             | 100 kHz   |
| 174 MHz to 230 MHz  | -54 dBm                                             | 100 kHz   |
| 230 MHz to 470 MHz  | -36 dBm                                             | 100 kHz   |
| 470 MHz to 694 MHz  | -54 dBm                                             | 100 kHz   |
| 694 MHz to 1 GHz    | -36 dBm                                             | 100 kHz   |
| 1 GHz to 12,75 GHz  | -30 dBm                                             | 1MHz      |

#### Transmitter limits for spurious emissions

#### **Test Procedure**

#### Conducted measurement

In case of conducted measurements, the radio equipment shall be connected to the measuring equipment via a suitable attenuator.

The spectrum in the spurious domain (see figures 1 or 3) shall be searched for emissions that exceed the limit values given in table or that come to within 6 dB below these limits. Each occurrence shall be recorded.

The measurement procedure refer to ETSI EN 300 328 V2.2.2 (2019-07) §5.4.9.2.1

Radiated measurement:

The test site as described in annex B and applicable measurement procedures as described in Annex A shall be used.

The test procedure is further as described under clause 5.4.9.2.1.

#### **Test Data**

#### **Environmental Conditions**

| Temperature:              | 28~31.7 °C      |
|---------------------------|-----------------|
| <b>Relative Humidity:</b> | 54~58 %         |
| ATM Pressure:             | 100.9~101.0 kPa |

The testing was performed by Holland Yang on 2020-10-11 for below 1GHz and Alan He on 2020-10-19 for above 1GHz.

EUT operation mode: Transmitting

Note: Pretest with 802.11b, 802.11g, 802.11n-HT20 and 802.11n-HT40, the worst case was 802.11b mode.

#### **Test Result: Pass**

Please refer to the below table for the worst case.

#### **Below 1GHz:**

|                    | Dogoiyor          | Turntabla       | Rx Antenna    |                |                      | Substitu              | ted                          | Absoluto       | EN 3           | 00 328         |
|--------------------|-------------------|-----------------|---------------|----------------|----------------------|-----------------------|------------------------------|----------------|----------------|----------------|
| Frequency<br>(MHz) | Reading<br>(dBµV) | Angle<br>Degree | Height<br>(m) | Polar<br>(H/V) | SG<br>Level<br>(dBm) | Cable<br>Loss<br>(dB) | Antenna<br>Gain<br>(dBd/dBi) | Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
|                    |                   |                 |               | Fo             | r Adapter            |                       |                              |                |                |                |
|                    | _                 | _               |               | Lov            | w Channel            |                       |                              |                | _              |                |
| 216.0              | 37.55             | 287             | 1.8           | Н              | -62.5                | 0.57                  | 0.0                          | -63.07         | -54            | 9.07           |
| 216.0              | 38.57             | 190             | 2.4           | v              | -60.7                | 0.57                  | 0.0                          | -61.27         | -54            | 7.27           |
|                    |                   |                 |               | Hig            | h Channe             | 1                     |                              |                |                |                |
| 216.1              | 37.51             | 263             | 2.1           | Н              | -62.5                | 0.57                  | 0.0                          | -63.07         | -54            | 9.07           |
| 216.1              | 38.63             | 132             | 1.5           | V              | -60.7                | 0.57                  | 0.0                          | -61.27         | -54            | 7.27           |
|                    |                   |                 |               | F              | or POE               |                       |                              |                |                |                |
|                    |                   |                 | ·             | Lov            | w Channel            | l                     |                              |                |                |                |
| 216.0              | 37.59             | 185             | 2.1           | Н              | -62.5                | 0.57                  | 0.0                          | -63.07         | -54            | 9.07           |
| 216.0              | 38.47             | 20              | 1.6           | V              | -60.8                | 0.57                  | 0.0                          | -61.37         | -54            | 7.37           |
|                    |                   |                 |               | Hig            | h Channe             | 1                     |                              |                |                |                |
| 216.1              | 37.62             | 2               | 2.0           | Н              | -62.4                | 0.57                  | 0.0                          | -62.97         | -54            | 8.97           |
| 216.1              | 38.48             | 305             | 1.1           | V              | -60.8                | 0.57                  | 0.0                          | -61.37         | -54            | 7.37           |

#### Above 1GHz:

|                    | Dessiver          | Turntabla       | Rx An         | tenna          |                      | Substitut             | ted                          | Absoluto       | EN 3           | 00 328         |
|--------------------|-------------------|-----------------|---------------|----------------|----------------------|-----------------------|------------------------------|----------------|----------------|----------------|
| Frequency<br>(MHz) | Reading<br>(dBµV) | Angle<br>Degree | Height<br>(m) | Polar<br>(H/V) | SG<br>Level<br>(dBm) | Cable<br>Loss<br>(dB) | Antenna<br>Gain<br>(dBd/dBi) | Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
|                    |                   |                 |               | Lov            | w Channel            | l                     |                              |                |                |                |
| 1199.98            | 62.54             | 220             | 2.4           | Н              | -45.5                | 1.50                  | 6.80                         | -40.20         | -30            | 10.20          |
| 1199.98            | 61.35             | 73              | 1.9           | V              | -46.4                | 1.50                  | 6.80                         | -41.10         | -30            | 11.10          |
| 4824.00            | 44.74             | 37              | 2.3           | Н              | -56.3                | 1.60                  | 12.10                        | -45.80         | -30            | 15.80          |
| 4824.00            | 44.69             | 219             | 2.0           | V              | -55.3                | 1.60                  | 12.10                        | -44.80         | -30            | 14.80          |
|                    |                   |                 |               | Hig            | h Channe             | 1                     |                              |                |                |                |
| 1199.98            | 62.35             | 127             | 1.8           | Н              | -45.7                | 1.50                  | 6.80                         | -40.40         | -30            | 10.40          |
| 1199.98            | 61.62             | 32              | 1.3           | V              | -46.1                | 1.50                  | 6.80                         | -40.80         | -30            | 10.80          |
| 4944.00            | 45.52             | 250             | 1.7           | Н              | -55.6                | 1.60                  | 12.10                        | -45.10         | -30            | 15.10          |
| 4944.00            | 45.96             | 185             | 2.1           | V              | -55.4                | 1.60                  | 12.10                        | -44.90         | -30            | 14.90          |

Note 1: The unit of antenna gain is dBd for frequency below 1GHz and is dBi for frequency above 1GHz. Note 2:

Absolute Level = SG Level - Cable loss + Antenna Gain Margin = Limit- Absolute Level

# ETSI EN 300 328 V2.2.2 (2019-07) §4.3.2.10 – RECEIVER SPURIOUS EMISSIONS

#### **Applicable Standard**

According to ETSI EN 300 328 V2.2.2 (2019-07) §4.3.2.10, the receiver spurious emissions are emissions at any frequency when the equipment is in receive mode.

The spurious emissions of the receiver shall not exceed the values given in table 13. In case of non-FHSS equipment with antenna connectors, these limits apply to emissions at the antenna port (conducted). For emissions radiated by the cabinet or for emissions radiated by integral antenna equipment (without antenna connectors), these limits are e.r.p. for emissions up to 1 GHz and e.i.r.p. for emissions above 1 GHz.

| Frequency range    | Maximum power, e.r.p. | Measurement bandwidth |
|--------------------|-----------------------|-----------------------|
| 30 MHz to 1 GHz    | -57 dBm               | 100 kHz               |
| 1 GHz to 12,75 GHz | -47 dBm               | 1 MHz                 |

#### **Test Procedure**

Conducted measurement:

In case of conducted measurements, the radio equipment shall be connected to the measuring equipment via a suitable attenuator.

The spectrum in the spurious domain (see figures 1 or 3) shall be searched for emissions that exceed the limit values given in table or that come to within 6 dB below these limits. Each occurrence shall be recorded.

The measurement procedure refer to ETSI EN 300 328 V2.2.2 (2019-07) §5.4.10.2.1

Radiated measurement

The test site as described in annex B and applicable measurement procedures as described in Annex A shall be used.

The test procedure is further as described under clause 5.4.10.2.1.

#### **Test Data**

#### **Environmental Conditions**

| Temperature:              | 28~31.7 °C      |
|---------------------------|-----------------|
| <b>Relative Humidity:</b> | 54~58 %         |
| ATM Pressure:             | 100.9~101.0 kPa |

*The testing was performed by Holland Yang on 2020-10-11 for below 1GHz and Alan He on 2020-10-19 for above 1GHz.* 

EUT operation mode: Receiving

Note: Pretest with 802.11b, 802.11g, 802.11n-HT20 and 802.11n-HT40, the worst case was 802.11b mode.

#### Bay Area Compliance Laboratories Corp. (Shenzhen)

### **Test Result: Pass**

Please refer to the below table for the worst case.

#### Below 1GHz:

|                    | Dogoiyor          | Turntabla       | Rx Antenna    |                |                      | Substitu              | ted                          | Absoluto       | EN 3           | 00 328         |
|--------------------|-------------------|-----------------|---------------|----------------|----------------------|-----------------------|------------------------------|----------------|----------------|----------------|
| Frequency<br>(MHz) | Reading<br>(dBµV) | Angle<br>Degree | Height<br>(m) | Polar<br>(H/V) | SG<br>Level<br>(dBm) | Cable<br>Loss<br>(dB) | Antenna<br>Gain<br>(dBd/dBi) | Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
|                    |                   |                 |               | Fo             | r Adapter            |                       |                              |                |                |                |
|                    |                   |                 |               | Lov            | w Channel            |                       |                              |                |                |                |
| 216.0              | 37.55             | 179             | 1.7           | Н              | -62.5                | 0.57                  | 0.0                          | -63.07         | -57            | 6.07           |
| 216.0              | 38.47             | 339             | 2.2           | V              | -60.8                | 0.57                  | 0.0                          | -61.37         | -57            | 4.37           |
|                    |                   |                 |               | Hig            | h Channe             | l I                   |                              |                |                |                |
| 215.9              | 37.59             | 219             | 2.1           | Н              | -62.5                | 0.57                  | 0.0                          | -63.07         | -57            | 6.07           |
| 215.9              | 38.44             | 327             | 1.4           | V              | -60.9                | 0.57                  | 0.0                          | -61.47         | -57            | 4.47           |
|                    |                   |                 |               | F              | or POE               |                       |                              |                |                |                |
|                    |                   |                 |               | Lov            | w Channel            |                       |                              |                |                |                |
| 215.9              | 37.56             | 222             | 1.7           | Н              | -62.5                | 0.57                  | 0.0                          | -63.07         | -57            | 6.07           |
| 215.9              | 38.42             | 58              | 2.4           | V              | -60.9                | 0.57                  | 0.0                          | -61.47         | -57            | 4.47           |
|                    |                   |                 |               | Hig            | h Channe             | 1                     |                              |                |                |                |
| 216.0              | 37.61             | 143             | 1.5           | Н              | -62.4                | 0.57                  | 0.0                          | -62.97         | -57            | 5.97           |
| 216.0              | 38.57             | 173             | 1.3           | V              | -60.7                | 0.57                  | 0.0                          | -61.27         | -57            | 4.27           |

#### Above 1GHz:

|                    | Dessiver          | Turntabla       | Rx An         | tenna          |                      | Substitu              | ted                          | Absoluto       | EN 3           | 00 328         |
|--------------------|-------------------|-----------------|---------------|----------------|----------------------|-----------------------|------------------------------|----------------|----------------|----------------|
| Frequency<br>(MHz) | Reading<br>(dBµV) | Angle<br>Degree | Height<br>(m) | Polar<br>(H/V) | SG<br>Level<br>(dBm) | Cable<br>Loss<br>(dB) | Antenna<br>Gain<br>(dBd/dBi) | Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
| Low Channel        |                   |                 |               |                |                      |                       |                              |                |                |                |
| 1493.52            | 42.69             | 32              | 2.3           | Н              | -66.0                | 1.60                  | 8.50                         | -59.10         | -47            | 12.10          |
| 1493.52            | 41.04             | 129             | 1.5           | V              | -67.9                | 1.60                  | 8.50                         | -61.00         | -47            | 14.00          |
|                    |                   |                 |               | Hig            | h Channe             | 1                     |                              |                |                |                |
| 1488.64            | 42.73             | 231             | 1.2           | Н              | -65.9                | 1.60                  | 8.50                         | -59.00         | -47            | 12.00          |
| 1488.64            | 41.91             | 206             | 1.9           | V              | -67.0                | 1.60                  | 8.50                         | -60.10         | -47            | 13.10          |

**Note 1:** The unit of antenna gain is dBd for frequency below 1GHz and is dBi for frequency above 1GHz. **Note 2:** 

Absolute Level = SG Level - Cable loss + Antenna Gain Margin = Limit- Absolute Level

# ETSI EN 300 328 V2.2.2 (2019-07) §4.3.2.11 - RECEIVER BLOCKING

#### **Applicable Standard**

This requirement applies to all receiver categories as defined in clause 4.2.3.

Receiver blocking is a measure of the ability of the equipment to receive a wanted signal on its operating channel without exceeding a given degradation due to the presence of an unwanted input signal (blocking signal) at frequencies other than those of the operating band and spurious responses.

#### **Performance Criteria:**

For equipment that supports a PER or FER test to be performed, the minimum performance criterion shall be a PER or FER less than or equal to 10 %.

For equipment that does not support a PER or a FER test to be performed, the minimum performance criterion shall be no loss of the wireless transmission function needed for the intended use of the equipment.

#### Limit:

While maintaining the minimum performance criteria as defined in clause 4.3.2.11.3, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined for the applicable receiver category provided in table 14, table 15 or table 16.

| Wan<br>C           | ted signal mean power from<br>companion device (dBm)<br>(see notes 1 and 4)                                                                                                                                                                                                                                                                                                                                                                  | Blocking signal<br>frequency<br>(MHz)                                                              | Blocking signal<br>power (dBm)<br>(see note 4)                                               | Type of<br>blocking<br>signal                                             |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|
| (-133 dBn          | n + 10 × log <sub>10</sub> (OCBVV)) or -68 dBm<br>whichever is less<br>(see note 2)                                                                                                                                                                                                                                                                                                                                                          | 2 380<br>2 504                                                                                     |                                                                                              |                                                                           |  |
| (-139 dBn          | n + 10 × log <sub>10</sub> (OCBW)) or -74 dBm<br>whichever is less<br>(see note 3)                                                                                                                                                                                                                                                                                                                                                           | 2 300<br>2 330<br>2 360<br>2 524<br>2 584<br>2 674                                                 | -34                                                                                          | cw                                                                        |  |
| NOTE 1:<br>NOTE 2: | OCEW is in Hz.<br>In case of radiated measurements<br>signal from the companion device of<br>using a wanted signal up to P <sub>min</sub> +<br>required to meet the minimum perfor<br>absence of any blocking signal.                                                                                                                                                                                                                        | using a companion<br>cannot be determine<br>26 dB where P <sub>min</sub> is<br>prmance criteria as | device and the level<br>ad, a relative test ma<br>the minimum level<br>defined in clause 4.3 | l of the wanted<br>ay be performed<br>of wanted signal<br>3.1.12.3 in the |  |
| NUTE 3:            | TE 3: In case of radiated measurements using a companion device and the level of the wanted<br>signal from the companion device cannot be determined, a relative test may be performed<br>using a wanted signal up to P <sub>min</sub> + 20 dB where P <sub>min</sub> is the minimum level of wanted signal<br>required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the<br>observe of any blocking circular. |                                                                                                    |                                                                                              |                                                                           |  |
| NOTE 4:            | The level specified is the level at the UUT receiver input assuming a 0 dBi antenna<br>assembly gain. In case of conducted measurements, this level has to be corrected for the<br>(in-band) antenna assembly gain (G). In case of radiated measurements, this level is<br>equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being<br>configured/positioned as recorded in clause 5.4.3.2.2.                 |                                                                                                    |                                                                                              |                                                                           |  |

Table 14: Receiver Blocking parameters for Receiver Category 1 equipment

| Table 15: | Receiver Blocking | narameters | receiver ( | ategon(2   | equinment |
|-----------|-------------------|------------|------------|------------|-----------|
| Table 15. | Receiver blocking | parameters | receiver   | rategory z | equipment |

| Wanted signal mean power from<br>companion device (dBm)<br>(see notes 1 and 3)                                                                                                                                                                                                                                                                                                                              | Blocking<br>signal<br>frequency<br>(MHz)                                                                                                                                       | Blocking<br>signal power<br>(dBm)<br>(see note 3)                                                                                                                                                     | Type of blocking<br>signal                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (-139 dBm + 10 × log <sub>10</sub> (OCBW) + 10 dB)<br>or (-74 dBm + 10 dB) whichever is less<br>(see note 2)                                                                                                                                                                                                                                                                                                | 2 380<br>2 504<br>2 300<br>2 584                                                                                                                                               | -34                                                                                                                                                                                                   | cw                                                                                                                                                                                                  |
| NOTE 1: OCBW is in Hz.<br>NOTE 2: In case of radiated measurement<br>wanted signal from the compant<br>may be performed using a want<br>minimum level of wanted signal<br>as defined in clause 4.3.1.12.3 is<br>NOTE 3: The level specified is the level at<br>assembly gain. In case of condu-<br>for the (in-band) antenna assem<br>this level is equivalent to a power<br>with the UUT being capfigured/ | nts using a co<br>ion device car<br>ed signal up t<br>required to m<br>in the absence<br>it the UUT rec<br>ucted measure<br>nbly gain (G).<br>er flux density<br>accitioned ac | mpanion device a<br>not be determine<br>o P <sub>min</sub> + 26 dB wi<br>eet the minimum<br>e of any blocking :<br>eiver input assur<br>ements, this level<br>In case of radiate<br>(PFD) in front of | and the level of the<br>ed, a relative test<br>here P <sub>min</sub> is the<br>performance criteria<br>signal.<br>hing a 0 dBi antenna<br>has to be corrected<br>d measurements,<br>the UUT antenna |

#### Table 16: Receiver Blocking parameters receiver Category 3 equipment

| Wanted sign:<br>companie<br>(see n                                                                                                 | al mean power from<br>on device (dBm)<br>otes 1 and 3)                                                                                                                                                                                                                                | Blocking<br>signal<br>frequency<br>(MHz)                                                                                                                                                               | Blocking<br>signal power<br>(dBm)<br>(see note 3)                                                                                                                                                                   | Type of blocking<br>signal                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (-139 dBm + 10 ×<br>or (-74 dBm +20<br>(se                                                                                         | ∝log <sub>10</sub> (OCBW) + 20 dB)<br>0 dB) whichever is less<br>se note 2)                                                                                                                                                                                                           | 2 380<br>2 504<br>2 300<br>2 584                                                                                                                                                                       | -34                                                                                                                                                                                                                 | cw                                                                                                                                                                                                         |
| NOTE 1: OCBW<br>NOTE 2: In cas<br>wante<br>may b<br>minim<br>criteria<br>NOTE 3: The le<br>assem<br>for the<br>this lev<br>with th | / is in Hz.<br>e of radiated measurement<br>d signal from the compan<br>e performed using a want<br>um level of wanted signal<br>a as defined in clause 4.3.<br>vel specified is the level a<br>bly gain. In case of condu<br>(in-band) antenna assen<br>vel is equivalent to a power | nts using a com<br>ion device cann<br>ted signal up to l<br>required to mee<br>1.12.3 in the ab<br>at the UUT receir<br>ucted measurem<br>nbly gain (G). In<br>er flux density (F<br>positioned as rec | panion device ar<br>ot be determined<br>P <sub>min</sub> + 30 dB wh<br>et the minimum p<br>sence of any blo<br>ver input assum<br>nents, this level h<br>case of radiated<br>PFD) in front of t<br>corded in clause | nd the level of the<br>d, a relative test<br>ere P <sub>min</sub> is the<br>performance<br>ocking signal.<br>ing a 0 dBi antenna<br>has to be corrected<br>I measurements,<br>he UUT antenna<br>5.4.3.2.2. |

#### **Test Procedure**

#### Conducted measurement:

For systems using multiple receive chains only one chain (antenna port) need to be tested. All other receiver inputs shall be terminated.

Figure 6 shows the test set-up which can be used for performing the receiver blocking test.



Figure 6: Test Set-up for receiver blocking

The procedure in step 1 to step 6 below shall be used to verify the receiver blocking requirement as described in clause 4.3.1.12 or clause 4.3.2.11. The performance monitoring device is capable of verifying the performance criteria as defined in clause 4.3.1.12.3 or clause 4.3.2.11.3.

Table 6, table 7 and table 8 in clause 4.3.1.12.4 contain the applicable blocking frequencies and blocking levels for each of the receiver categories for testing Receiver Blocking on FHSS equipment.

Table 14, table 15 and table 16 in clause 4.3.2.11.4 contain the applicable blocking frequencies and blocking levels for each of the receiver categories for testing Receiver Blocking on non-FHSS equipment.

#### Step 1:

• For non-FHSS equipment, the UUT shall be set to the lowest operating channel on which the blocking test has to be performed (see clause 5.4.11.1).

#### Step 2:

• The blocking signal generator is set to the first frequency as defined in the appropriate table corresponding to the receiver category and type of equipment.

#### Step 3:

• With the blocking signal generator switched off, a communication link is established between the UUT and the associated companion device using the test setup shown in figure 6.

• Unless the option provided in note 2 of the applicable table referred to in clause 5.4.11.2.1 is used, the level of the wanted signal shall be set to the value provided in the table corresponding to the receiver category and type of equipment. The test procedure defined in clause 5.4.2, and more in particular clause 5.4.2.2.1.2, can be used to measure the (conducted) level of the wanted signal however no correction shall be made for antenna gain of the companion device (step 6 in clause 5.4.2.2.1.2 shall be ignored). This level may be measured directly at the output of the companion device and a correction is made for the coupling loss into the UUT. The actual level for the wanted signal shall be recorded in the test report.

ETSI EN 300 328 V2.2.2 (2019-07)

Page 17 of 23

#### Bay Area Compliance Laboratories Corp. (Shenzhen)

• When the option provided in note 2 of the applicable table referred to in clause 5.4.11.2.1 is used, the attenuation of the variable attenuator shall be increased in 1 dB steps to a value at which the minimum performance criteria as specified in clause 4.3.1.12.3 or clause 4.3.2.11.3 is still met. The resulting level for the wanted signal at the input of the UUT is Pmin. This signal level (Pmin) is increased by the value provided in note 2 of the applicable table corresponding to the receiver category and type of equipment.

#### Step 4:

• The blocking signal at the UUT is set to the level provided in the table corresponding to the receiver category and type of equipment.

• If the performance criteria as specified in clause 4.3.1.12.3 or clause 4.3.2.11.3 are met then proceed to step 6.

#### Step 5:

• If the performance criteria as specified in clause 4.3.1.12.3 or clause 4.3.2.11.3 is not met, step 3 and step 4 shall be repeated after that the frequency of the blocking signal set in step 2 has been increased with a value equal to the Occupied Channel Bandwidth except:

- For the blocking frequency 2 380 MHz, where this frequency offset shall be less than or equal to 10 MHz. If this frequency offset is more than 7 MHz, the level of the wanted signal shall be increased by 3 dB.
- For the blocking frequency 2 503,5 MHz, where this frequency offset shall be less than or equal to 10 MHz. If this frequency offset is more than 7 MHz, the level of the wanted signal shall be decreased by 3 dB.
- If the performance criteria as specified in clause 4.3.1.12.3 or clause 4.3.2.11.3 is still not met, step 3 and step 4 shall be repeated after that the frequency of the blocking signal set in step 2 has been decreased with a value equal to the Occupied Channel Bandwidth except:
  - For the blocking frequency 2 380 MHz, where this frequency offset shall be less than or equal to 10 MHz. If this frequency offset is more than 7 MHz, the level of the wanted signal shall be decreased by 3 dB.

- For the blocking frequency 2 503,5 MHz, where this frequency offset shall be less than or equal to 10 MHz. If this frequency offset is more than 7 MHz, the level of the wanted signal shall be increased by 3 dB.

- If the performance criteria as specified in clause 4.3.1.12.3 or clause 4.3.2.11.3 is still not met, the UUT fails to comply with the Receiver Blocking requirement and step 6 and step 7 are no longer required.
- It shall be recorded in the test report whether the shift of blocking frequencies as described in the present step was used.

#### Step 6:

• Repeat step 4 and step 5 for each remaining combination of frequency and level for the blocking signal as provided in the table corresponding to the receiver category and type of equipment.

#### Step 7:

• For non-FHSS equipment, repeat step 2 to step 6 with the UUT operating at the highest operating channel on which the blocking test has to be performed (see clause 5.4.11.1).

#### Step 8:

• It shall be assessed and recorded in the test report whether the UUT complies with the Receiver Blocking requirement.

## **Test Data**

## **Environmental Conditions**

| Temperature:              | 24 °C     |
|---------------------------|-----------|
| <b>Relative Humidity:</b> | 50 %      |
| ATM Pressure:             | 101.0 kPa |

The testing was performed by Coco Liu on 2021-02-03.

EUT operation mode: Receiving (Worst case)

Test Result: Compliant. Please refer to the Appendix.

# **EXHIBIT B - EUT PHOTOGRAPHS**

Please refer to the Attachment.

ETSI EN 300 328 V2.2.2 (2019-07)

Page 20 of 23

# **EXHIBIT C - TEST SETUP PHOTOGRAPHS**



Radiated Spurious Emissions View (Below 1GHz, For Adapter)

Radiated Spurious Emissions View (Below 1GHz, For POE)





# Radiated Spurious Emissions View (Above 1GHz)

# APPENDIX

## **Appendix A: Receiver Blocking**

Test Result

| Test Mode | Antenna | Channel | Wanted<br>signal[dBm] | Freq.[M<br>Hz] | CW<br>[dBm] | PER[%] | Limit<br>[%] | Verdict |
|-----------|---------|---------|-----------------------|----------------|-------------|--------|--------------|---------|
| 11B       | Ant1    | 2412    | -74                   | 2300           | -32.5       | 6.80   | <=10         | PASS    |
|           |         |         | -74                   | 2330           | -32.5       | 2.70   | <=10         | PASS    |
|           |         |         | -74                   | 2360           | -32.5       | 2.60   | <=10         | PASS    |
|           |         |         | -68                   | 2380           | -32.5       | 1.50   | <= 10        | PASS    |
|           |         | 2472    | -68                   | 2504           | -32.5       | 4.70   | <=10         | PASS    |
|           |         |         | -74                   | 2524           | -32.5       | 1.10   | <=10         | PASS    |
|           |         |         | -74                   | 2584           | -32.5       | 2.50   | <=10         | PASS    |
|           |         |         | -74                   | 2674           | -32.5       | 1.80   | <= 10        | PASS    |

Note: The Maximum EIRP is 12.16dBm>10dBm and the EUT is an adaptive device, so it belongs to the receiver category 1.

# Test Graphs



#### \*\*\*\*\* END OF REPORT \*\*\*\*\*