

ETSI EN 301 908-1 V15.1.1 (2021-09) ETSI EN 301 908-2 V13.1.1 (2020-06) TEST REPORT

For

Xiamen Milesight IoT Co., Ltd.

Building C09, Software Park Phase III, Xiamen 361024, Fujian, China

Tested Model: UG67-L04EU-868M Multiple Models: UG67-L00E-868M, UG67-868M,UG67-L04EU-868M-H32, UG67-L00E-868M-H32, UG67-868M-H32, UG67-868M-H512,UG67-L04EU-868M-H512, UG67-L00E-868M-H512,UG67-868M-H8, UG67-L04EU-868M-H8,UG67-L00E-868M-H8

Report Type: Product Type:

Amended Report LoRaWAN Gateway

Report Number: XMDN220516-20735E-22DA1

Report Date: 2022-06-10

Reviewed By: Rocky Xiao RF Engineer

Bay Area Compliance Laboratories Corp. (Dongguan) No.12, Pulong East 1st Road, Tangxia Town, Dongguan,

Test Laboratory: Guangdong, China Tel: +86-769-86858888

Fax: +86-769-86858891 www.baclcorp.com.cn

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	3
Declarations	
Exhibit A – Eut Photographs	
DECLARATION LETTER	5
RELOW IS THE ORIGINAL REPORT	-

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	RXM210219050-22D	Original Report	2021-09-17
1	XMDN220516-20735E-22DA1	Amended Report	2022-06-10

Note: This is the first amended report application which was based on the original report. The differences between them as following:

- 1. Changed the applicant's address to Building C09, Software Park Phase III, Xiamen 361024, Fujian, China:
- 2. Added EUT models: UG67-868M-H512, UG67-L04EU-868M-H512, UG67-L00E-868M-H512, UG67-868M-H8, UG67-L04EU-868M-H8, UG67-L00E-868M-H8;
- 3. Changed the trade name to Milesight.
- 4. Change the **silk screen** on the EUT appearance;
- 5. Upgraded the standard to ETSI EN 301 908-1 V15.1.1 (2021-09).

The change between the previous equipment and the current equipment is stated and guaranteed by the applicant. The difference between them will not affect the test results, we will keep the test results, test photos, but updated the related EUT photos.

Declarations

BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with a triangle symbol " Δ ". Customer model name, addresses, names, trademarks etc. are not considered data.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

This report cannot be reproduced except in full, without prior written approval of the Company.

This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report may contain data that are not covered by the accreditation scope and shall be marked with an asterisk "\(\psi\)".

Page 3 of 7

Bay Area Compliance Laboratories Corp. (Dongguan)	Report No.: XMDN220516-20735E-22DA1
EXHIBIT A – EUT PHOTOGRAPHS	
For photos in this section, please refer to report No.: XMD	N220516-20735E-02A1 EXHIBIT A.

Page 4 of 7

DECLARATION LETTER

Xiamen Milesight IoT Co., Ltd.

Add:Building C09, Software Park Phase III, Xiamen 361024, Fujian, China

Tel: 0592-5023060 Fax: 0592-5023065

Emal: tongzl@ursalink.com

DECLARATION OF SIMILARITY

Date: 2022-5-9

To whom it may concern

We, Xiamen Milesight IoT Co., Ltd., hereby declare that the product: LoRaWAN Gateway, model:UG67-L00E-868M,UG67-868M,UG67-L04EU-868M-H32,UG67-L00E-868M-H32, UG67-868M-H32,UG67-868M-H512,UG67-L04EU-868M-H512,UG67-L00E-868M-H512, UG67-868M-H8,UG67-L04EU-868M-H8,UG67-L00E-868M-H8 is electrically identical with the model: UG67-L04EU-868M which was tested by BACL with the same electromagnetic emissions and electromagnetic compatibility characteristics. A description of the differences between the tested model and those that are declared similar are as follows:

The models have same software.

All the above models share one PCB board. The only difference between models is that some function devices paste or not paste. The below table show differences:

√: paste --: not paste

	LTE module	WiFi	GPS	POE	LoRa	External	Other
						antenna	differences
UG67-L04EU-868M	√	√	√	√	√ (868)	√	model
	(EC25-EUX)						names
UG67-L00E-868M	√	√	√	√	√ (868)	√	
	(EC25-EUX)						
UG67-868M		√	√	√	√ (868)	√	
UG67-L04EU-868M-H32	√	√		√	√ (868)	√	model
	(EC25-EUX)						names
UG67-L00E-868M-H32	√	√		√	√ (868)	√	
	(EC25-EUX)						
UG67-868M-H32		√		√	√ (868)	✓	
UG67-868M-H512		√		√	√ (868)	√	
UG67-L04EU-868M-H512	√	√		√	√ (868)	√	model
	(EC25-EUX)						names
UG67-L00E-868M-H512	√	√		√	√ (868)	√	
	(EC25-EUX)						
UG67-868M-H8		√		√	√ (868)	√	
UG67-L04EU-868M-H8	√	√		√	√ (868)	√	model
	(EC25-EUX)						names

UG67-L00E-868M-H8	√	√	 √	√ (868)	√	
	(EC25-EUX)					

Please contact me should there be need for any additional clarification or information.

Best Regards,

Signature:

then long Tong

Printed Name: Zhenlong Tong

Title: Manager

Bay Area Compliance Laboratories Corp. (Dongguan)	Report No.: XMDN220516-20735E-22DA
BELOW IS THE ORIG	INAL REPORT

ETSI EN 301 908-1 V13.1.1 (2019-11) ETSI EN 301 908-2 V13.1.1 (2020-06) TEST REPORT

For

Xiamen Milesight IoT Co., Ltd.

4/F,NO. 63-2 Wanghai Road, 2nd Software Park,Xiamen ,China

Tested Model: UG67-L04EU-868M Multiple Models: UG67-L00E-868M, UG67-L04EU-868M-H32, UG67-L00E-868M-H32

Report Type: Product Type:

Original Report LoRaWAN Gateway

Report Number: RXM210219050-22D

Report Date: 2021-09-17

Reviewed By: Rocky Xiao RF Engineer

Bay Area Compliance Laboratories Corp. (Dongguan) No.12, Pulong East 1st Road, Tangxia Town, Dongguan,

Test Laboratory: Guangdong, China Tel: +86-769-86858888

Fax: +86-769-86858891 www.baclcorp.com.cn

TABLE OF CONTENTS

eneral Informationeneral Information	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
OBJECTIVE	
TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY	
DECLARATIONS	
vstem Test Configuration	
DESCRIPTION OF TEST CONFIGURATION.	6
SUPPORT EQUIPMENT LIST AND DETAILS	e
SUPPORT CABLE LIST AND DETAILS	
BLOCK DIAGRAM OF TEST SETUP	<i>(</i>
TEST EQUIPMENT LIST	
Environmental Conditions	
ımmary of Test Results	
- Radiated emissions (UE)	10
APPLICABLE STANDARD	10
LIMIT	
TEST PROCEDURE	10
TEST DATA	
xhibit A – Eut Photographs	13
xhibit B – Test Setup Photographs	

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

EUT Name:	LoRaWAN Gateway
Test Model:	UG67-L04EU-868M
Multiple Models:	UG67-L00E-868M,UG67-L04EU-868M-H32, UG67-L00E-868M-H32
Model Difference:	Refer to Dos
Rated Input Voltage:	DC 56V from POE
Serial Number:	RXM210219050-RF-S1
EUT Received Date:	2021.02.20
EUT Received Status:	Good

Objective

This report is prepared on behalf of *Xiamen Milesight IoT Co., Ltd.* in accordance with ETSI EN 301 908-1 V13.1.1 (2019-11) IMT cellular networks; Harmonised Standard for access to radio spectrum; Part 1: Introduction and common requirements;

ETSI EN 301 908-2 V13.1.1 (2020-06) IMT cellular networks; Harmonised Standard for access to radio spectrum; Part 2: CDMA Direct Spread (UTRA FDD) User Equipment (UE).

The objective is to determine the compliance of EUT with: ETSI EN 301 908-1 V13.1.1 (2019-11), ETSI EN 301 908-2 V13.1.1 (2020-06).

Test Methodology

All measurements contained in this report were conducted with ETSI EN 301 908-1 V13.1.1 (2019-11) IMT cellular networks; Harmonised Standard for access to radio spectrum; Part 1: Introduction and common requirements; ETSI EN 301 908-2 V13.1.1 (2020-06) IMT cellular networks; Harmonised Standard for access to radio spectrum; Part 2: CDMA Direct Spread (UTRA FDD) User Equipment (UE);

Measurement Uncertainty

Parameter	Flab	Maximum allow uncertainty
Transmitter maximum output power	±0.6 dB	±0,7 dB
Transmitter spectrum emissions mask	±1,5 dB	±1,5 dB
Transmitter spurious emissions f ≤ 2,2 GHz	±2.5 dB*	±1,5 dB
Transmitter spurious emissions 2,2 GHz < f ≤ 4 GHz	±2.5 dB*	±2,0 dB
Transmitter spurious emissions f > 4 GHz	±2.5 dB	±4,0 dB
Transmitter spurious emissions Co-existence band (≥ -60 dBm)	±2.5 dB*	±2,0 dB
Transmitter spurious emissions Co-existence band (< -60 dBm)	±2.5 dB	±3,0 dB
Transmitter Minimum output power	±0.6 dB	±1,0 dB
Receiver Adjacent Channel Selectivity (ACS)	±1.5 dB*	±1,1 dB
Receiver Blocking characteristics f < 15 MHz offset	±1.5 dB*	±1,4 dB
Receiver Blocking characteristics 15 MHz offset ≤ f ≤ 2,2 GHz	±1.5 dB*	±1,0dB
Receiver Blocking characteristics 2,2 GHz < f ≤ 4 GHz	±2.5 dB*	±1,7dB
Receiver Blocking characteristics 2,2 GHz < f ≤ 4 GHz	±2.5 dB*	±1,7dB
Receiver Blocking characteristics f > 4 GHz	±2.5 dB	±3,1dB
Receiver spurious response f≤2,2 GHz	±1.5 dB	±2,0 dB
Receiver spurious response 2,2 GHz < f ≤ 4 GHz	±1.5 dB	±2,0 dB
Receiver spurious response f > 4 GHz	±2.5 dB	±4,0 dB
Receiver spurious response For UE receive band (-60 dBm)	±2.5 dB	±3,0 dB
Receiver spurious response For UE transmit band (-60 dBm)	±2.5 dB	±3,0 dB
Receiver intermodulation characteristics	±1.3 dB	±1,3 dB
Out of synchronization of handling power DPCCH Ec	±0.6 dB*	±0,4 dB
Out of synchronization of handling power Ior Transmit OFF power	±0.6 dB	±1,0 dB
Transmitter adjacent channel leakage power ratio	±0.8 dB	±0,8 dB

Note 1:

Note 2

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.

^{*} Test system of laboratory have a measurement uncertainty greater than that specified in harmonized standard, this equipment can still be used provided that an adjustment is made follows:

any additional uncertainty in the test system over and above that specified in harmonized standard should be used to tighten the test requirements - making the test harder to pass (for some tests, e.g. receiver tests, this may require modification of stimulus signals). This procedure will ensure that a test system not compliant with harmonized standard does not increase the probability of passing an EUT that would otherwise have failed a test if a test system compliant with harmonized standard had been used.

Declarations

BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with a triangle symbol " \blacktriangle ". Customer model name, addresses, names, trademarks etc. are not considered data.

Report No.: RXM210219050-22D

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

This report cannot be reproduced except in full, without prior written approval of the Company.

This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report may contain data that are not covered by the accreditation scope and shall be marked with an asterisk "*\Dag*".

SYSTEM TEST CONFIGURATION

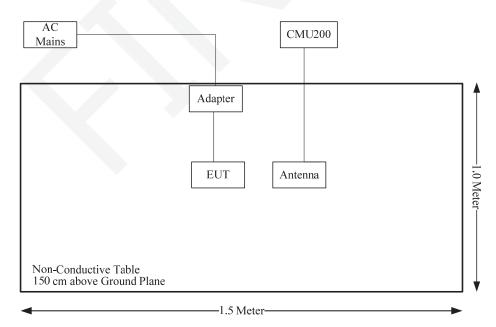
Description of Test Configuration

L.T.: Low Temperature -20°C; N.T.: Normal Temperature +25°C; H.T.: High Temperature +55°C;

L.V.: Low Voltage 203VAC; N.V.: Normal Voltage 230VAC; H.V.: High Voltage 253VAC;

Nominal Voltage: 230Vac.

The extreme conditions are declared by applicant.


Support Equipment List and Details

Manufacturer	r Description Model		Serial Number
R&S	Universal Radio Communication Tester	CMU200	110 822

Support Cable List and Details

Cable Description	Shielding Cable	Ferrite Core	Length (m)	From Port	То
AC Line	No	No	1.5	AC main	POE
RJ45	No	No	1.2	POE	EUT

Block Diagram of Test Setup

Test Equipment List

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date			
	Radiated emissions below 1GHz							
Sunol Sciences	Antenna	JB3	A060611-2	2020-08-25	2023-08-25			
R&S	EMI Test Receiver	ESCI	100224	2020-09-12	2021-09-12			
Unknown	Coaxial Cable	C-NJNJ-50	C-1000-01	2021-08-19	2022-08-18			
Unknown	Coaxial Cable	C-NJNJ-50	C-0400-02	2021-08-19	2022-08-18			
Unknown	Coaxial Cable	C-NJNJ-50	C-0530-01	2021-08-19	2022-08-18			
Sonoma	Amplifier	310N	185914	2021-08-19	2022-08-18			
EMCO	Adjustable Dipole Antenna	3121C	9109-753	N/A	N/A			
Unknown	Coaxial Cable	C-NJNJ-50	C-0200-02	2021-09-04	2022-09-03			
Agilent	Signal Generator	E8247C	MY43321350	2021-04-25	2022-04-24			
	Radia	ated emissions above 10	GHz					
ETS-Lindgren	Horn Antenna	3115	000 527 35	2018-10-12	2021-10-12			
Agilent	Spectrum Analyzer	E4440A	SG43360054	2021-07-22	2022-07-21			
Unknown	Coaxial Cable	C-SJSJ-50	C-0800-01	2021-09-04	2022-09-03			
Mini-Circuit	Amplifier	ZVA-213-S+	54201245	2021-09-04	2022-09-03			
TDK RF	Horn Antenna	HRN-0118	130 084	2018-10-12	2021-10-12			
Unknown	Coaxial Cable	C-NJNJ-50	C-0200-02	2021-09-04	2022-09-03			
Agilent	Signal Generator	E8247C	MY43321350	2021-04-25	2022-04-24			

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Environmental Conditions

Test Item:	Radiated emissions
Temperature:	27.1~29.7°C
Relative Humidity:	58~67 %
ATM Pressure:	100.6~100.8 kPa
Tester:	Johnson Huang Jeremy Liang
Test Date:	2021.09.04~2021.09.06

SUMMARY OF TEST RESULTS

SN	Rule and Clause	Description of Test	Test Result	
1	EN 301 908-1 Clause 4.2.2	Radiated emissions (UE)	Compliance	
2	EN 301 908-1 Clause 4.2.3	Radiated emissions (BS and repeater)	Not applicable*	
3	EN 301 908-1 Clause 4.2.4	Control and monitoring functions (UE)	Compliance*	
4	EN 301 908-2 Clause 4.2.2	Transmitter maximum output power	Compliance*	
5	EN 301 908-2 Clause 4.2.3	Transmitter spectrum emission mask	Compliance*	
6	EN 301 908-2 Clause 4.2.4	Transmitter spurious emissions	Compliance*	
7	EN 301 908-2 Clause 4.2.5	Transmitter minimum output power	Compliance*	
8	EN 301 908-2 Clause 4.2.6	Receiver adjacent channel selectivity (ACS)	Compliance*	
9	EN 301 908-2 Clause 4.2.7	Receiver blocking characteristics	Compliance*	
10	EN 301 908-2 Clause 4.2.8	Receiver spurious response	Compliance*	
11	EN 301 908-2 Clause 4.2.9	Receiver intermodulation characteristics	Compliance*	
12	EN 301 908-2 Clause 4.2.10	Receiver spurious emissions	Compliance*	
13	EN 301 908-2 Clause 4.2.11	Out-of-synchronization handling of output power	Compliance*	
14	EN 301 908-2 Clause 4.2.12	Transmitter adjacent channel leakage power ratio	Compliance*	
15	EN 301 908-2 Clause 4.2.13	Receiver reference sensitivity level	Compliance*	
16	EN 301 908-2 Clause 4.2.14	Receiver Total Radiated Sensitivity (TRS)	Not applicable**	
17	EN 301 908-2 Clause 4.2.15	Total Radiated Power (TRP)	Not applicable**	

Note:

Not applicable*: This product does not belong to BS and repeater. Not applicable**: The width of EUT is lager than 72mm.

Compliance*: This device contains module (model No.: EC25-EUX, EC25-EUX MINIPCIE), please refer to the module test report No.: GCA210112W004 and REA210112W004-2.

1 – RADIATED EMISSIONS (UE)

Applicable Standard

This test assesses the ability of radio communications equipment and ancillary equipment to limit unwanted emissions from the enclosure port.

Report No.: RXM210219050-22D

This test is applicable to radio communications equipment and ancillary equipment.

This test shall be performed on the radio communications equipment and/or a representative configuration of the ancillary equipment.

Limit

The frequency boundary and reference bandwidths for the detailed transitions of the limits between the requirements for out-of-band emissions and spurious emissions are based on Recommendations ITU-R SM.329-12 [1] and SM.1539-1 [i.6].

The requirements shown in table 4.2.2.2-1 are only applicable for frequencies in the spurious domain.

Table 4.2.2.2-1: Radiated spurious emissions requirements (UE)

Frequency	Minimum requirement (e.r.p.)/ reference bandwidth idle mode	Minimum requirement (e.r.p.)/ reference bandwidth traffic mode	Applicability
30 MHz ≤ f < 1 000 MHz	-57 dBm/100 kHz	-36 dBm/100 kHz	All
1 GHz ≤ f < 12,75 GHz	-47 dBm/1 MHz	-30 dBm/1 MHz	All
fc - 2,5 × 5 MHz < f < fc + 2,5 × 5 MHz (note 2) fc - 2,5 × BW _{Channel} MHz < f < fc + 2,5 × BW _{Channel} MHz		Not defined Not defined	UTRA FDD, UTRA TDD, 3,84 Mcps option, cdma2000, spreading rate 3 E-UTRA FDD, E-UTRA TDD, Mobile WiMAX TM
(note 2) fc - 2,5 × 10 MHz < f < fc1 + 2,5 × 10 MHz (note 2)		Not defined	UTRA TDD, 7,68 Mcps option
fc - 4 MHz < f < fc + 4 MHz (note 2)		Not defined	UTRA TDD, 1,28 Mcps option cdma2000, spreading rate 1

NOTE 1: fc is the UE transmit centre frequency.

NOTE 2: This frequency range is not in the spurious domain, no requirement is then defined for this frequency range.

Test Procedure

According to ETSI EN 301 908-1 V13.1.1 (2019-11) clause 5.3.1

Test Data

Pre-scan low/ middle/ high channel, the worst case as below.

Please refer to following table:

Band 1 traffic mode middle channel

1950 MHz

Report No.: RXM210219050-22D

		Receiver Reading (dBµV)	Substituted Method					
Frequency (MHz)	Polar (H/V)		Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
3900.00	Н	39.64	-57.00	13.40	1.52	-45.12	-30.00	15.12
3900.00	V	38.45	-58.12	13.40	1.52	-46.24	-30.00	16.24
5850.00	Н	35.89	-56.82	14.05	1.54	-44.31	-30.00	14.31
5850.00	V	35.21	-57.56	14.05	1.54	-45.05	-30.00	15.05
1125.00	Н	48.22	-55.41	7.38	1.04	-49.07	-30.00	19.07
1125.00	V	47.13	-57.07	7.38	1.04	-50.73	-30.00	20.73
165.80	Н	50.75	-60.17	0.00	0.24	-60.41	-36.00	24.41
216.24	V	50.46	-56.50	0.00	0.21	-56.71	-36.00	20.71

Band 1_idle mode

1950 MHz

		Receiver Reading (dBµV)	Substituted Method			Absolute		
	Polar (H/V)		Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
1125.00	Н	45.34	-58.29	7.38	1.04	-51.95	-47.00	4.95
1125.00	V	45.98	-58.22	7.38	1.04	-51.88	-47.00	4.88
1370.00	Н	29.05	-74.46	8.79	1.20	-66.87	-47.00	19.87
1370.00	V	27.67	-76.53	8.79	1.20	-68.94	-47.00	21.94
140.58	V	41.90	-62.79	0.00	0.23	-63.02	-57.00	6.02
119.24	Н	44.93	-64.75	0.00	0.21	-64.96	-57.00	7.96

Band 8_traffic mode_middle channel 897.6

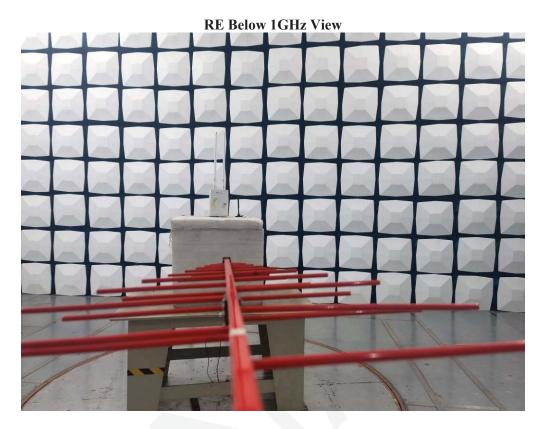
	Polar (H/V)	Receiver Reading (dBµV)	Substituted Method			Abaalaa		
Frequency (MHz)			Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
1795.20	Н	45.12	-59.14	11.09	0.68	-48.73	-30.00	18.73
1795.20	V	44.65	-60.21	11.09	0.68	-49.80	-30.00	19.80
2692.80	Н	36.72	-65.31	13.11	1.25	-53.45	-30.00	23.45
2692.80	V	36.91	-65.23	13.11	1.25	-53.37	-30.00	23.37
3590.40	Н	36.01	-63.02	14.07	1.51	-50.46	-30.00	20.46
3590.40	V	35.71	-63.32	14.07	1.51	-50.76	-30.00	20.76
1125.00	Н	47.34	-56.29	7.38	1.04	-49.95	-30.00	19.95
1125.00	V	16.72	-87.48	7.38	1.04	-81.14	-30.00	51.14
161.92	Н	50.25	-60.59	0.00	0.24	-60.83	-36.00	24.83
249.20	V	49.55	-58.40	0.00	0.27	-58.67	-36.00	22.67

MHz

Band 8_idle mode 897.6 MHz

		D	Sub	stituted Meth	od	Absoluto		Margin (dB)
Frequency (MHz)	Polar (H/V)	Receiver Reading (dBµV)	Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	
1125.00	Н	45.41	-58.22	7.38	1.04	-51.88	-47.00	4.88
1125.00	V	44.98	-59.22	7.38	1.04	-52.88	-47.00	5.88
1920.00	Н	29.46	-73.36	11.84	1.04	-62.56	-47.00	15.56
1920.00	V	29.58	-73.56	11.84	1.04	-62.76	-47.00	15.76
136.28	Н	41.22	-68.74	0.00	0.23	-68.97	-57.00	11.97
118.95	V	42.05	-62.36	0.00	0.20	-62.56	-57.00	5.56

Note 1:The unit of antenna gain is dBd for frequency below 1GHz and is dBi for frequency above 1GHz. Note 2:


Absolute Level = Substituted Level - Cable loss + Antenna Gain

Margin = Limit- Absolute Level

EXHIBIT A – EUT PHOTOGRAPHS

For photos in this section, please refer to report No.: RXM210219050-02 EXHIBIT A.

EXHIBIT B – TEST SETUP PHOTOGRAPHS

*****END OF REPORT****