

SfAR-S-16DI-M

User Manual

Expansion Module - 16 Digital Inputs

iSMA CONTROLLI S.p.A. - Via Carlo Levi 52, 16010 Sant'Olcese (GE) - Italy | support@ismacontrolli.com

Table of Contents

1	Introduction	3
1.1	Revision History	3
2	Safety Rules	4
3	Module Features	5
3.1	Purpose and Description of the Module	5
3.2	Technical Specification	5
3.3	Dimensions	6
4	Communication	8
4.1	Grounding and Shielding	8
4.2	Network Termination	8
4.3	Setting Module Address in RS485 Modbus Network	8
4.4	Types of Modbus Functions	10
4.5	Communication Settings	10
4.5.1	Default Settings	10
4.6	Restoring Default Configuration	11
4.7	Configuration Registers	11
5	LED Indicators	12
6	Connections	13
6.1	Block Diagram	13
6.2	Power Supply Connection	13
6.2.1	DC Power Connection	13
6.2.2	AC Power Connection	14
6.3	Digital Inputs Connection	14
6.3.1	Connection of Encoder	14
6.3.2	Connection of Input	15
6.4	Quick Connector	15
7	DIP Switch	16
8	Input Filter	17
9	Module Registers	18
9.1	Registered Access	18
9.2	Bit Access	22
10	Configuration Software	25

1 Introduction

Thank you for choosing our product.

This manual will help you with proper handling and operating of the device.

The information included in this manual have been prepared with utmost care by our professionals and serve as a description of the product without incurring any liability for the purposes of commercial law. This information does not discharge you from the liability of your own judgement and verification.

We reserve the right to change product specifications without notice.

Please read the instructions carefully and follow the recommendations concluded therein.

WARNING!

Failure to follow instructions can result in equipment damage or impede the use of the hardware or software.

1.1 Revision History

Rev.	Date	Description
3.2	25 May 2022	Rebranded

Table 1. Revision history

2 Safety Rules

- Improper wiring of the product can damage it and lead to other hazards. Make sure that the product has been correctly wired before turning the power on.
- Before wiring or removing/mounting the product, make sure to turn the power off. Failure to do so might cause an electric shock.
- Do not touch electrically charged parts such as power terminals. Doing so might cause an electric shock.
- Do not disassemble the product. Doing so might cause an electric shock or faulty operation.
- Use the product only within the operating ranges recommended in the specification (temperature, humidity, voltage, shock, mounting direction, atmosphere, etc.). Failure to do so might cause a fire or faulty operation.
- Firmly tighten the wires to the terminal. Failure to do so might cause a fire.
- Avoid installing the product in close proximity to high-power electrical devices and cables, inductive loads, and switching devices. Proximity of such objects may cause an uncontrolled interference, resulting in an instable operation of the product.
- Proper arrangement of the power and signal cabling affects the operation of the entire control system. Avoid laying the power and signal wiring in parallel cable trays. It can cause interferences in monitored and control signals.
- It is recommended to power controllers/modules with AC/DC power suppliers. They
 provide better and more stable insulation for devices compared to AC/AC transformer
 systems, which transmit disturbances and transient phenomena like surges and bursts
 to devices. They also isolate products from inductive phenomena from other
 transformers and loads.
- Power supply systems for the product should be protected by external devices limiting overvoltage and effects of lightning discharges.
- Avoid powering the product and its controlled/monitored devices, especially high power and inductive loads, from a single power source. Powering devices from a single power source causes a risk of introducing disturbances from the loads to the control devices.
- If an AC/AC transformer is used to supply control devices, it is strongly recommended to use a maximum 100 VA Class 2 transformer to avoid unwanted inductive effects, which are dangerous for devices.
- Long monitoring and control lines may cause loops in connection with the shared power supply, causing disturbances in the operation of devices, including external communication. It is recommended to use galvanic separators.
- To protect signal and communication lines against external electromagnetic interferences, use properly grounded shielded cables and ferrite beads.
- Switching the digital output relays of large (exceeding specification) inductive loads can cause interference pulses to the electronics installed inside the product. Therefore, it is recommended to use external relays/contactors, etc. to switch such loads. The use of controllers with triac outputs also limits similar overvoltage phenomena.
- Many cases of disturbances and overvoltage in control systems are generated by switched, inductive loads supplied by alternating mains voltage (AC 120/230 V). If they do not have appropriate built-in noise reduction circuits, it is recommended to use external circuits such as snubbers, varistors, or protection diodes to limit these effects.

3 Module Features

3.1 Purpose and Description of the Module

The SFAR-S-16DI-M module is an innovative device that provides a simple and cost-effective extension of the number of inputs in popular PLCs.

The module has 16 digital inputs with configurable timer/counter option. In addition, terminals IN1 and IN2, and IN3 and IN4 can be used to connect up to two encoders. The module is also equipped with a non-volatile FRAM memory. All inputs and outputs are isolated from the power supply and RS485 port using optocouplers. Each channel can be individually configured in one of several modes.

This module is connected to the RS485 bus with a twisted-pair wire. Communication is via Modbus RTU or Modbus ASCII. The use of 32-bit ARM core processor provides fast processing and quick communication. The baud rate is configurable from 2400 to 115200.

The module is designed for mounting on a DIN rail in accordance with DIN EN 5002.

The module is equipped with a set of LEDs to indicate the status of inputs and outputs, power supply, and communication, which is useful for diagnostic purposes and helping to find errors.

Module configuration is done via USB by using a dedicated computer program. It also allows for changing the parameters using the Modbus protocol or set the Modbus address using the DIP switches under the front panel.

3.2 Technical Specification

Power Supply	Voltage	10-38 V DC; 10-28 V AC
	(with active Modbus	2.4 W at 24 V DC
		3 VA at 24 V AC
Digital Inputs	No. of inputs	16
	Voltage range	0-36 V
	Low state "0"	0-3 V
	High state "1"	6-36 V
	Input impedance	4 kΩ
	Isolation	1500 Vrms
	Input type	PNP or NPN

Counters	No.	16
	Resolution	32-bit
	Frequency	1 kHz (max.)
	Impulse width	500 μs (min.)
	Memory	Non-volatile memory (FRAM)
Temperature	Work	-10 °C to +50°C (14°F to 122°F)
	Storage	-40 °C to +85°C (-40°F to 185°F)
Connectors	Power supply	2 pin
	Communication	3 pin
	Inputs	2x 10 pin
	Configuration	mini USB
Size	Height	119.1 mm (4.689 in)
	Length	110.9 mm (4.366 in)
	Width	22.7 mm (0.894 in)
Interface	RS485	Up to 128 devices

Table 2. Technical specification

3.3 Dimensions

The appearance and dimensions of the module are shown below. The module is mounted directly to the rail in the DIN industry standard. Power connectors, communication, and I/Os are at the bottom and top of the module. USB connector configuration and indicators are located on the front of the module.

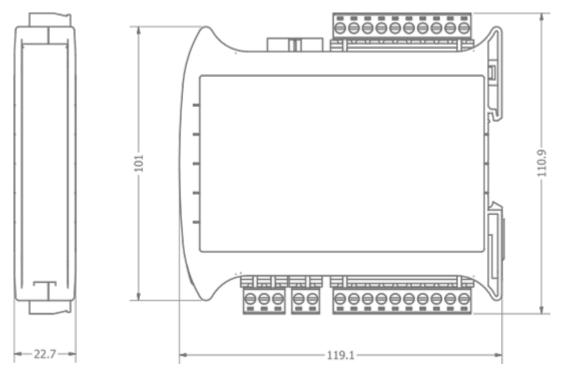


Figure 1. Dimensions

4 Communication

4.1 Grounding and Shielding

In most cases, I/O modules will be installed in an enclosure along with the other devices, which generate electromagnetic radiation. Relays, contactors, transformers, motor invertors, etc., are examples of such devices. Radiation can induce electrical noise into both power and signal lines, as well as direct radiation into the module. Whether or not the SfAR modules are immune to such effects, the interferences must be suppressed at their source if possible to ensure the proper functioning of the entire system. Appropriate grounding, shielding and other protective steps should be taken at the installation stage to prevent these effects. It is recommended to at least follow the rules below:

- line power cables must be routed with spatial separation from signal and data transmission cables;
- analog and digital signal cables should also be separated;
- it is recommended to use shielded cables for analog signals, cable shields should not be interrupted by intermediate terminals;
- the shielding should be earthed directly after the cable enters the cabinet.

It is recommended to install interference suppressors when switching inductive loads (e.g., coils of contactors, relays, solenoid valves). RC snubbers or varistors are suitable for AC voltage and freewheeling diodes for DC voltage loads. The suppressing elements must be connected as close to the coil as possible.

4.2 Network Termination

Transmission line effects often present problems for data communication networks. These problems include reflections and signal attenuation.

To eliminate the presence of reflections of signal from the end of the cable, the cable must be terminated at both ends with a resistor across the line adequate to its characteristic impedance. Both ends must be terminated since the propagation is bidirectional. In case of an RS485 twisted pair cable, this termination is typically 120 Ω .

4.3 Setting Module Address in RS485 Modbus Network

The following table shows how to set DIP switches to determine the address of the module. The module address is set with the DIP switches in the range of 0 to 31. Addresses from 32 to 255 can be set via RS485 or USB and using dedicated software tool.

Addr	SW1	SW2	SW3	SW4	SW5
0	OFF	OFF	OFF	OFF	OFF
1	ON	OFF	OFF	OFF	OFF
2	OFF	ON	OFF	OFF	OFF
3	ON	ON	OFF	OFF	OFF

Addr	SW1	SW2	SW3	SW4	SW5
4	OFF	OFF	ON	OFF	OFF
5	ON	OFF	ON	OFF	OFF
6	OFF	ON	ON	OFF	OFF
7	ON	ON	ON	OFF	OFF
8	OFF	OFF	OFF	ON	OFF
9	ON	OFF	OFF	ON	OFF
10	OFF	ON	OFF	ON	OFF
11	ON	ON	OFF	ON	OFF
12	OFF	OFF	ON	ON	OFF
13	ON	OFF	ON	ON	OFF
14	OFF	ON	ON	ON	OFF
15	ON	ON	ON	ON	OFF
16	OFF	OFF	OFF	OFF	ON
17	ON	OFF	OFF	OFF	ON
18	OFF	ON	OFF	OFF	ON
19	ON	ON	OFF	OFF	ON
20	OFF	OFF	ON	OFF	ON
21	ON	OFF	ON	OFF	ON
22	OFF	ON	ON	OFF	ON
23	ON	ON	ON	OFF	ON
24	OFF	OFF	OFF	ON	ON
25	ON	OFF	OFF	ON	ON
26	OFF	ON	OFF	ON	ON
27	ON	ON	OFF	ON	ON
28	OFF	OFF	ON	ON	ON
29	ON	OFF	ON	ON	ON

Addr	SW1	SW2	SW3	SW4	SW5
30	OFF	ON	ON	ON	ON
31	ON	ON	ON	ON	ON

Table 3. Setting module address in RS485 Modbus network using DIP switches

4.4 Types of Modbus Functions

There are 4 types of Modbus functions supported by the Sfar modules.

Туре	Beginning Address	IOs	Access	Modbus Command
1	00001	Digital Outputs	Bit Read/write	1, 5, 15
2	10001	Digital Inputs	Bit Read	2
3	30001	Input Registers	Registered Read	3
4	40001	Output Registers	Registered Read/write	4, 6, 16

Table 4. Types of Modbus functions supported by the module

4.5 Communication Settings

Data stored in the module's memory is given in the 16-bit registers. The access to registers is via Modbus RTU or Modbus ASCII.

4.5.1 Default Settings

The default configuration can be restored with the switch, SW6.

Baud Rate	19200
Parity	No
Data Bits	8
Stop Bits	1
Reply Delay [ms]	0
Modbus Type	RTU

Table 5. Default settings

4.6 Restoring Default Configuration

To restore the default configuration, follow the steps below:

- turn the power off;
- turn the DIP switch SW6 on;
- turn the power on;
- when power and the communication LED are lit, turn the switch SW6 off

WARNING! After restoring the default configuration, all values stored in the registers are cleared as well.

4.7 Configuration Registers

Modbus Address	Decimal Address	Hex Address	Name	Values
40003	2	0x02	Baud Rate	0 - 2400 1 - 4800 2 - 9600 3 - 19200 4 - 38400 5 - 57600 6 - 115200 other - value * 10
40005	4	0x04	Parity	0 – none 1 – odd 2 – even 3 – always 0 4 – always 1
40004	3	0x03	Stop Bits	1 – one stop bit 2 – two stop bit
40004	3	0x03	Data Bits	7 – 7 data bits 8 – 8 data bits
40006	5	0x05	Response Delay	Time in ms
40007	6	0x06	Modbus Mode	0 – RTU 1 – ASCII

Table 6. Configuration registers

5 LED Indicators

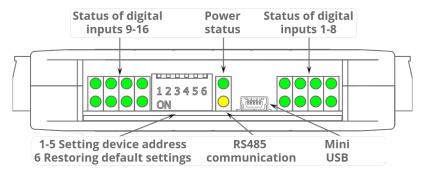


Figure 2. Indicators

Indicator	Description
Power Supply	The LED indicates that the module is correctly powered
Communication	The LED lights up when the unit receives the correct packet and sends the answer
Inputs State	The LED indicates that on the input is high state

Table 7. Description of indicators

6 Connections

6.1 Block Diagram

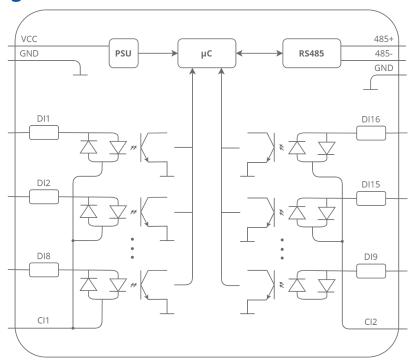


Figure 3. Block diagram

6.2 Power Supply Connection

6.2.1 DC Power Connection

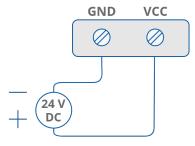


Figure 4. DC power connection

6.2.2 AC Power Connection

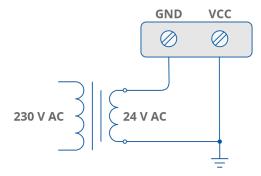


Figure 5. AC power connection

Communication Bus Connection

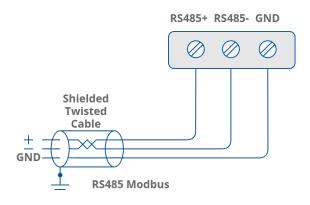


Figure 6. Communication bus connection

6.3 Digital Inputs Connection

6.3.1 Connection of Encoder

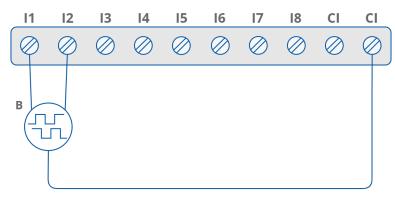


Figure 7. Connection of encoder

6.3.2 Connection of Input

Figure 8. Connection of input

6.4 Quick Connector

Quick Connector is a unique feature of modules that allows for quickly connecting a group of devices with a flat ribbon cable. Thanks to this solution, it is enough to connect power and RS485 communication to one of the devices in the group and the others will be powered and communicated with ribbon cable.

The Quick Connector is sufficient to connect up to 10 devices next to each other. What is important that the various types of modules in the SFAR-S family can be connected with the ribbon cable.

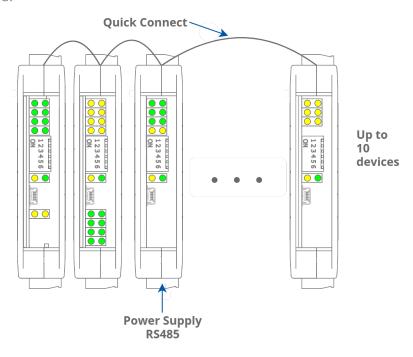


Figure 9. Quick connector

7 DIP Switch

Figure 10. DIP switch

Switch	Function	Description
1	Module address +1	Setting module address from 0 to 31
2	Module address +2	
3	Module address +4	
4	Module address +8	
5	Module address +16	
6	Restoring default settings	Restoring default settings

Table 8. Description of switches

8 Input Filter

Digital inputs allow connection of the AC signal. However, due to the fact that these inputs are fast and allow counting pulses at 1 kHz frequency, it is not possible to use them to monitor the presence of a variable frequency signal like 50 Hz because, depending on the moment at which the input state is read with the Modbus protocol, different results can be obtained despite the fact that AC voltage is still present. To be able to monitor the AC signals, the possibility of filtering the digital inputs has been introduced. Filtration works in a way that the high state occurs if the voltage is maintained for at least 40 ms. The low state appears when there is no voltage for at least 80 ms.

The filter can be turned on for each input of the device independently using the 40018 register.

9 Module Registers

9.1 Registered Access

Modbus	Dec	Hex	Register Name	Access	Description	
30001	0	0x00	Version/Type	Read	Version and type of the device	
30002	1	0x01	Switches	Read	Switches state	
40003	2	0x02	Baud Rate	Read/write	RS485 baud rate	
40004	3	0x03	Stop Bits & Data Bits	Read/write	No. of stop bits & data bits	
40005	4	0x04	Parity	Read/write	Parity bit	
40006	5	0x05	Response Delay	Read/write	Response delay in ms	
40007	6	0x06	Modbus Mode	Read/write	Modbus mode (ASCII or RTU)	
40018	17	0x11	Inputs Filter	Read/write	Configuration of the inputs filter	
40033	32	0x20	Received Packets LSR (Least Significant Register)	Read/write	No. of received packets	
40034	33	0x21	Received Packets MSR (Most Significant Register)	Read/write		
40035	34	0x22	Incorrect Packets LSR	Read/write	No. of received packets with	
40036	35	0x23	Incorrect Packets MSR	Read/write	error	
40037	36	0x24	Sent Packets LSR	Read/write	No. of sent packets	
40038	37	0x25	Sent Packets MSR	Read/write		
30051	50	0x32	Inputs	Read	Inputs state	
40053	52	0x34	Counter 1 LSR	Read/write	32-bit counter 1	
40054	53	0x35	Counter 1 MSR	Read/write		
40055	54	0x36	Counter 2 LSR	Read/write	32-bit counter 2	
40056	55	0x37	Counter 2 MSR	Read/write		
40057	56	0x38	Counter 3 LSR	Read/write	32-bit counter 3	
40058	57	0x39	Counter 3 MSR	Read/write		

Modbus	Dec	Hex	Register Name	Access	Description
40059	58	0x3A	Counter 4 LSR	Read/write	32-bit counter 4
40060	59	0x3B	Counter 4 MSR	Read/write	
40061	60	0x3C	Counter 5 LSR	Read/write	32-bit counter 5
40062	61	0x3D	Counter 5 MSR	Read/write	
40063	62	0x3E	Counter 6 LSR	Read/write	32-bit counter 6
40064	63	0x3F	Counter 6 MSR	Read/write	
40065	64	0x40	Counter 7 LSR	Read/write	32-bit counter 7
40066	65	0x41	Counter 7 MSR	Read/write	
40067	66	0x42	Counter 8 LSR	Read/write	32-bit counter 8
40068	67	0x43	Counter 8 MSR	Read/write	
40069	68	0x44	Counter 9 LSR	Read/write	32-bit counter 9
40070	69	0x45	Counter 9 MSR	Read/write	
40071	70	0x46	Counter 10 LSR	Read/write	32-bit counter 10
40072	71	0x47	Counter 10 MSR	Read/write	
40073	72	0x48	Counter 11 LSR	Read/write	32-bit counter 11
40074	73	0x49	Counter 11 MSR	Read/write	
40075	74	0x4A	Counter 12 LSR	Read/write	32-bit counter 12
40076	75	0x4B	Counter 12 MSR	Read/write	
40077	76	0x4C	Counter 13 LSR	Read/write	32-bit counter 13
40078	77	0x4D	Counter 13 MSR	Read/write	
40079	78	0x4E	Counter 14 LSR	Read/write	32-bit counter 14
40080	79	0x4F	Counter 14 MSR	Read/write	
40081	80	0x50	Counter 15 LSR	Read/write	32-bit counter 15
40082	81	0x51	Counter 15 MSR	Read/write	
40083	82	0x52	Counter 16 LSR	Read/write	32-bit counter 16
40084	83	0x53	Counter 16 MSR	Read/write	

Modbus	Dec	Hex	Register Name	Access	Description
40085	84	0x54	CCounter 1 LSR	Read/write	32-bit value of captured counter 1
40086	85	0x55	CCounter 1 MSR	Read/write	Counter 1
40087	86	0x56	CCounter 2 LSR	Read/write	32-bit value of captured counter 2
40088	87	0x57	CCounter 2 MSR	Read/write	Counter 2
40089	88	0x58	CCounter 3 LSR	Read/write	32-bit value of captured counter 3
40090	89	0x59	CCounter 3 MSR	Read/write	Counter 5
40091	90	0x5A	CCounter 4 LSR	Read/write	32-bit value of captured counter 4
40092	91	0x5B	CCounter 4 MSR	Read/write	Counter 4
40093	92	0x5C	CCounter 5 LSR	Read/write	32-bit value of captured counter 5
40094	93	0x5D	CCounter 5 MSR	Read/write	Counter 5
40095	94	0x5E	CCounter 6 LSR	Read/write	32-bit value of captured
40096	95	0x5F	CCounter 6 MSR	Read/write	— counter 6
40097	96	0x60	CCounter 7 LSR	Read/write	32-bit value of captured counter 7
40098	97	0x61	CCounter 7 MSR	Read/write	Counter /
40099	98	0x62	CCounter 8 LSR	Read/write	32-bit value of captured
40100	99	0x63	CCounter 8 MSR	Read/write	Counter o
40101	100	0x64	CCounter 9 LSR	Read/write	32-bit value of captured counter 9
40102	101	0x65	CCounter 9 MSR	Read/write	Counter 9
40103	102	0x66	CCounter 10 LSR	Read/write	32-bit value of captured
40104	103	0x67	CCounter 10 MSR	Read/write	counter 10
40105	104	0x68	CCounter 11 LSR	Read/write	32-bit value of captured
40106	105	0x69	CCounter 11 MSR	Read/write	counter 11
40107	106	0x6A	CCounter 12 LSR	Read/write	32-bit value of captured
40108	107	0x6B	CCounter 12 MSR	Read/write	counter 12
40109	108	0x6C	CCounter 13 LSR	Read/write	32-bit value of captured
40110	109	0x6D	CCounter 13 MSR	Read/write	counter 13

Modbus	Dec	Hex	Register Name	Access	Description
40111	110	0x6E	CCounter 14 LSR	Read/write	32-bit value of captured counter 14
40112	111	0x6F	CCounter 14 MSR	Read/write	Counter 14
40113	112	0x70	CCounter 15 LSR	Read/write	32-bit value of captured counter 15
40114	113	0x71	CCounter 15 MSR	Read/write	Counter 13
40115	114	0x72	CCounter 16 LSR	Read/write	32-bit value of captured counter 16
40116	115	0x73	CCounter 16 MSR	Read/write	Counter 16
40117	116	0x74	Counter Config 1	Read/write	Counter configuration
40118	117	0x75	Counter Config 2	Read/write	+1 – time measurement (if 0 counting impulses)
40119	118	0x76	Counter Config 3	Read/write	+2 – autocatch counter every 1 sec +4 – catch value when input
40120	119	0x77	Counter Config 4	Read/write	low +8 – reset counter after
40121	120	0x78	Counter Config 5	Read/write	catch +16 – reset counter if input
40122	121	0x79	Counter Config 6	Read/write	low +32 – encoder
40123	122	0x7A	Counter Config 7	Read/write	
40124	123	0x7B	Counter Config 8	Read/write	
40125	124	0x7C	Counter Config 9	Read/write	
40126	125	0x7D	Counter Config 10	Read/write	
40127	126	0x7E	Counter Config 11	Read/write	
40128	127	0x7F	Counter Config 12	Read/write	
40129	128	0x80	Counter Config 13	Read/write	
40130	129	0x81	Counter Config 14	Read/write	
40131	130	0x82	Counter Config 15	Read/write	
40132	131	0x83	Counter Config 16	Read/write	
40133	132	0x84	Catch	Read/write	Catch counter
40134	133	0x85	Status	Read/write	Captured counter

Table 9. Registered access

9.2 Bit Access

Modbus Address	Dec Address	Hex Address	RegisterName	Access	Description
10801	800	0x320	Input 1	Read	Input 1 state
10802	801	0x321	Input 2	Read	Input 2 state
10803	802	0x322	Input 3	Read	Input 3 state
10804	803	0x323	Input 4	Read	Input 4 state
10805	804	0x324	Input 5	Read	Input 5 state
10806	805	0x325	Input 6	Read	Input 6 state
10807	806	0x326	Input 7	Read	Input 7 state
10808	807	0x327	Input 8	Read	Input 8 state
10809	808	0x328	Input 9	Read	Input 9 state
10810	809	0x329	Input 10	Read	Input 10 state
10811	810	0x32A	Input 11	Read	Input 11 state
10812	811	0x32B	Input 12	Read	Input 12 state
10813	812	0x32C	Input 13	Read	Input 13 state
10814	813	0x32D	Input 14	Read	Input 14 state
10815	814	0x32E	Input 15	Read	Input 15 state
10816	815	0x32F	Input 16	Read	Input 16 state
2113	2112	0x840	Capture 1	Read/write	Capture counter 1
2114	2113	0x841	Capture 2	Read/write	Capture counter 2
2115	2114	0x842	Capture 3	Read/write	Capture counter 3
2116	2115	0x843	Capture 4	Read/write	Capture counter 4
2117	2116	0x844	Capture 5	Read/write	Capture counter 5
2118	2117	0x845	Capture 6	Read/write	Capture counter 6
2119	2118	0x846	Capture 7	Read/write	Capture counter 7
2120	2119	0x847	Capture 8	Read/write	Capture counter 8
2121	2120	0x848	Capture 9	Read/write	Capture counter 9

Modbus Address	Dec Address	Hex Address	RegisterName	Access	Description
2122	2121	0x849	Capture 10	Read/write	Capture counter 10
2123	2122	0x84A	Capture 11	Read/write	Capture counter 11
2124	2123	0x84B	Capture 12	Read/write	Capture counter 12
2125	2124	0x84C	Capture 13	Read/write	Capture counter 13
2126	2125	0x84D	Capture 14	Read/write	Capture counter 14
2127	2126	0x84E	Capture 15	Read/write	Capture counter 15
2128	2127	0x84F	Capture 16	Read/write	Capture counter 16
2129	2128	0x850	Captured 1	Read/write	Captured counter 1
2130	2129	0x851	Captured 2	Read/write	Captured counter 2
2131	2130	0x852	Captured 3	Read/write	Captured counter 3
2132	2131	0x853	Captured 4	Read/write	Captured counter 4
2133	2132	0x854	Captured 5	Read/write	Captured counter 5
2134	2133	0x855	Captured 6	Read/write	Captured counter 6
2135	2134	0x856	Captured 7	Read/write	Captured counter 7
2136	2135	0x857	Captured 8	Read/write	Captured counter 8
2137	2136	0x858	Captured 9	Read/write	Captured counter 9
2138	2137	0x859	Captured 10	Read/write	Captured counter
2139	2138	0x85A	Captured 11	Read/write	Captured counter
2140	2139	0x85B	Captured 12	Read/write	Captured counter
2141	2140	0x85C	Captured 13	Read/write	Captured counter
2142	2141	0x85D	Captured 14	Read/write	Captured counter
2143	2142	0x85E	Captured 15	Read/write	Captured counter 15

SfAR-S-16DI-M User Manual

Modbus Address	Dec Address	Hex Address	RegisterName	Access	Description
2144	2143	0x85F	Captured 16	Read/write	Captured counter 16

Table 10. Bit access

www.ismacontrolli.com

10 Configuration Software

The SfAR Configurator is a software, which is designed to set the communication module registers over Modbus network as well as to read and write the current value of other registers of the module. It is a convenient way to test the system as well as to observe real-time changes in the registers.

Communication with the module is done via a USB cable. The module does not require any drivers.

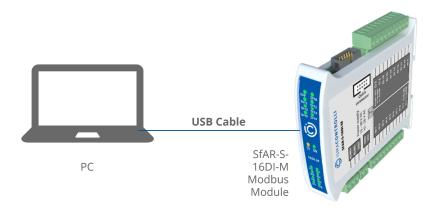


Figure 11. PC connection

The SfAR Configurator is a universal software, where it is possible to configure all available modules.

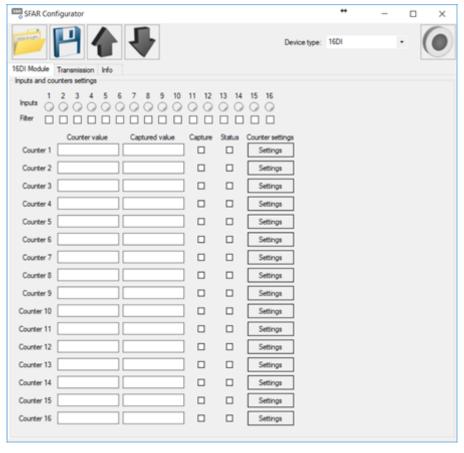


Figure 12. The Sfar Configurator