
1. Integration Guide for 3rd Parties (DRAFT) . 2
2. PUBLIC - status/local/json/alert/{new,expired} . 7
3. PUBLIC - status/local/json/interval/<X>min/<deviceid>/<readingkey>/<channel> - interval statistics . 9
4. PUBLIC - status/local/json/cabinet/<deviceid> Cabinet models . 12
5. PUBLIC - status/local/json/device/# - Live reading data . 18
6. PUBLIC - status/local/text/device/# . 25
7. PUBLIC - status/local/json/alert/state . 29
8. PUBLIC - SENML name keys - registry of uses . 32
9. Connecting to Gateway and Simple Setup . 32
10. Configure remote MQTT bridges . 40
11. Connect to the Gateway's MQTT Message Broker as a client . 42
12. Using the SDK to create your own applications . 44

1.
2.

Integration Guide for 3rd Parties (DRAFT)
Target audience: third parties looking to integrate eTactica hardware into external software packages.technical

Topics covered

MQTT data streams available on each gateway
Configuring MQTT bridges OUT to your own MQTT broker
Scripting to reformat data
?? Ask for more topics

Topics covered (here at least).not

Integration of EB/EM directly into Modbus systems

Overview of gateway operation
MQTT Streams available as data sources
Methods of Integration

MQTT Bridge OUT to your service (without modifications)
MQTT bridge OUT to your service (with reformatting or filtering)

Pros and Cons
Pros
Cons

Language choices
Lua libraries available
Writing your application
Init script
Process monitoring
Packaging your service

MQTT bridge IN from your service
Examples

Lua
Python

MQTTHTTP post from the gateway

Overview of gateway operation

A brief overview of how the gateway operates will help to understand the type of data available, and what it means. The gateway runs a Modbus
acquisition program () which continuously polls all configured devices (both local and remote) and posts all the live readings directly to themlifter
onboard MQTT broker. Each device is polled nominally every 2 seconds, and the variables collected from each device can vary immensely, see
the examples below. (Note that these are not the variables available from EM/EB, just what is commonly collected)only

Separate processes then listen to these MQTT streams and process them for sending to external software services, in whatever format they
require. These can be as simple as directing the raw stream out, or selecting certain values, compressing to only send changed values, sending
only every 15 minutes, almost anything you can think of. A web UI, () on the gateway allows monitoring all of this raw data.channel monitor

EM EB (power sync*) Third party modbus device

Measurements per point voltage, power factor, current current, voltage*, cos phi*, kwh import* arbitrary

Measurements per device net kwh, sum varh, frequency, temperature temperature, frequency* arbitrary

MQTT Streams available as data sources

Two major streams are available to use as your data source. (at present)

The SenML stream PUBLIC - status/local/json/device/# - Live reading data
The "simple" text stream PUBLIC - status/local/text/device/#

These two streams have pros and cons. The SenML stream provides a single rich JSON message for each Modbus device read. It includes all
readings from that device, the timestamp it was read, information on the device itself, and includes error information if the modbus request failed.

The "simple" stream simply provides a topic for reading, and the messages are just the data value itself, with no extra formatting. (Assumeevery
locale=C wrt to numeric formatting, ie, period for decimal separator, no thousands grouping indicator)

SenML "simple"

Pros single reading, all information together

timestamped

full device information.

no parsing required

easy to select single value of interest

easy to visualise

Cons harder to select single values

more verbose, some redundant
information

many more messages for some devices (can be much more CPU usage if you listen to
entire tree)

need to wait for multiple messages to correlate readings from the same device

no timestamps in individual messages

partial device information (on other topics in the stream)

No unit provided, must be inferred from type name

Additionally, an MQTT stream is available that contains the user entered Cabinet Model. This contains information entered by the user such as
cabinet groupings along with names, sizes and phase assignments of electrical breakers. This is optional information but it can make for much
richer data. See PUBLIC - status/local/json/cabinet/<deviceid> Cabinet models

Methods of Integration

Integration methods fall largely into a couple of camps

MQTT bridge OUT to your service, with or without reformatting of messages. (most common)
MQTT bridge IN your service, (reformatting/restructuring done at your end)from
MQTT->HTTP post from the gateway.

MQTT Bridge OUT to your service (without modifications)

This is the possibly the simplest configuration. The gateway is simply configured to send a copy of one it's internal data streams (see above)
directly to the MQTT broker of your choice. That could be in your own local network, cloud hosted, or anything in between.

In it's simplest case, for this configuration, you can simply manually reconfigure the onboard MQTT broker, using the web UI or editing the config
files directly. An example of this, where you send the local status/local/json/device/# stream to your own MQTT broker, using TLSv1.2, and
remapping the topic to include a device id is shown below.

The direct config section corresponding to this is shown below.

You have the full flexibility of mosquittos' bridge configurations here. See for full details. This ishttps://mosquitto.org/man/mosquitto-conf-5.html
both a blessing and a curse.

You may wish to simply bridge the topics directly, but provide an easier to use UI for your users to enable your service. The screenshot below
shows the current simple style for this:

This requires packaging of UI elements, and deploying this virtual "package" to your gateways, but it's straight forward and you can copysome
and paste your way from an existing example such as: https://github.com/remakeelectric/owrt_pub_feeds/tree/master/output-activitystream

This package includes the UI for user config and basic on/off, default settings, and also includes a stub example of running an extra daily service
using the gateways built in cron support.

MQTT bridge OUT to your service (with reformatting or filtering)

This is the most common integration so far. A software service runs on the gateway, listens to one of the live streams, and handles
reformatting/aggregating or any other transformation desired, and republishes the messages back to the broker. To simplify the software
development, the onboard MQTT broker is configured to do the outbound bridging, so it handles reconnecting and security settings via standard
configurations, and you write your software in the simple worldview of a local broker.

For example, the service for a third party cloud software package "99clouds" would simply publish anything they like to ext/99clouds/out/<t
 and can subscribe to the topic to receive any messages from that cloud service. Thisopic for remote broker> ext/99clouds/in/#

makes it easier to have multiple third party services co-exist, but if you have complicated needs, you can always manage your own outbound
MQTT connections directly from your application.

Pros and Cons

Pros

Packaged service, included and managed directly on each gateway.
Service instance only has to consider one gateway's worth of data
Send only what you need, when you need it.

Cons

Must develop in a language suitable for deployment on the gateway.
Must deploy your package to your gateways. (Can't use the factory image directly)
A lot of boilerplate to handle packaging and monitoring

/etc/config/mosquitto manual bridge configuration

https://mosquitto.org/man/mosquitto-conf-5.html
https://github.com/remakeelectric/owrt_pub_feeds/tree/master/output-activitystream

Language choices

We recommend Lua for most applications. It is easier to write, test and deploy than a C/C++ application, and importantly, has enough
performance and low enough overhead that you can run applications easily on the gateway. You use languages like python, but you willcan
become memory and cpu constrained quite quickly, and we reallllly don't recommend it. If you want to use C/C++, see the "Using the SDK"
document, and OpenWrt's documentation on "Building your own software" You can plausibly write simple applications even in just raw shell
scripting, but you'll probably run into performance problems fairly quickly. The version of Lua on the gateways is Lua 5.1 (with the "lnum" patch
applied, which is normally transparent)

Lua libraries available

This is not an exhaustive list, and many more can be enabled or added using the SDK

Library Description

penlight general utility library

lua-mosquitto lua bindings to the mosquitto MQTT client library

cjson high performance json encoded/decoder

socket + luasec For making HTTP/HTTPS requests

posix Allows access to common system calls

lfs lua file system access

remake.ugly_log Simple logging to console/syslog

lua bitop Bitwise operations

lua zlib lua bindings to zlib, for various compression tasks

Writing your application

Probably the best overview is to simply copy an existing application. "output-thingsboard" https://github.com/remakeelectric/owrt_pub_feeds/tree/
 is a nice well contained application that demonstates:master/output-thingsboard

lua application handling reformatting output and processing inputs. See files/usr/bin/output-thingsboard.lua
init script with configuration loading and MQTT bridge configuration See files/etc/init.d/output-thingsboard
process monitoring see files/etc/monit.d/output-thingsboard.process.check
Default configuration see files/etc/uci-defaults
Web interface for enabling and basic paramter settings, see luarsrc/

In the application itself, there's a lot of boilerplate for verifying data formats and making mqtt connections and handling json decoding. You can
largely copy this as is.

Init script

You have a lot of flexibility here. Normally, you should try and check whether your service is enabled or not, and ensure that any required MQTT
connections are in place. You can choose to load and validate configuration here, check external scripts, validate network connectivity, the sky's
the limit. A good example, with a lot of detail, but not too overwhelming is available at: https://github.com/remakeelectric/owrt_pub_feeds/blob/ma
ster/output-thingsboard/files/etc/init.d/output-thingsboard

Specific notes to follow there. The "add_instance" method is the core, handling loading configuration from the OpenWrt standard configuration
files in /etc/config/output-thingsboard, enabling/disabling process monitoring, and starting the service itself. The other important section is how
the MQTT bridges are torn down and recreated, along with topic remappings. Carefully using topic remappings makes sure that you don't
interfere with any other software service. The general guideline has been to use the and trees for your serviceext/<service>/in ext/<service>/out
locally.

Process monitoring

The gateway has built in process monitoring via and you can leverage this for your own processes. Simply include a snippet for yourMonit
application, much as the example applications.

https://stevedonovan.github.io/Penlight/api/manual/01-introduction.md.html
https://github.com/flukso/lua-mosquitto
https://github.com/mpx/lua-cjson
https://github.com/diegonehab/luasocket
http://luaposix.github.io/luaposix/
http://keplerproject.github.io/luafilesystem/manual.html
https://github.com/remakeelectric/owrt_pub_feeds/tree/master/output-thingsboard
https://github.com/remakeelectric/owrt_pub_feeds/tree/master/output-thingsboard
https://github.com/remakeelectric/owrt_pub_feeds/blob/master/output-thingsboard/files/etc/init.d/output-thingsboard
https://github.com/remakeelectric/owrt_pub_feeds/blob/master/output-thingsboard/files/etc/init.d/output-thingsboard
https://mmonit.com/monit/

check process some-name matching '/usr/bin/lua /usr/bin/your-process'
quite flexible here, see Monit documentation
 start program = "/etc/init.d/your-init-script start"
 stop program = "/etc/init.d/your-init-script stop"
 if totalmemory is greater than 40% for 3 cycles then restart
 if totalcpu is greater than 40% for 3 cycles then restart
 group your-group # group is optional too

Feel free to use as much or as little of monit as you like. The basic config is enough for most people

Packaging your service

Using the SDK to create your own applications Has initial steps you'll need. Primarily, you need to follow the Makefile example from
output-thingsboard, or similar. This is only required if you want to share and install your package on multiple gateways. You can also simply copy
files directly to the gateways manually using SCP, fetch them via HTTP(S) from the gateways using small scripts, or even use the toolchain to
simply manually compile binaries by hand.

MQTT bridge IN from your service

As the eTactica gateways run an onboard MQTT broker, you can simply connect to this broker from your own service. You will need to manage
the network access to this yourself. The plain unencrypted MQTT port 1883 is closed to remote access by default, but can be enabled in the web
UI. If necessary, you can set up the full range of TLS security options, using the MQTT brokers built in configuration. The broker is , andmosquitto
the webui allows configuration of all the settings mosquitto allows. Please let us know if there are settings you are not able to manage. almost
Managing mosquitto is out of scope of this document.

This method can make a lot of sense if you don't feel comfortable writing software to run on the gateways directly, don't want to manage
deployments to the gateways, and particularly if you will be deploying your software in the same site, so you don't have the same network security
concerns as a cloud service.

This method also allows you to write your software in language, using any environment you desire. You simply need MQTT client software,any
and to process and handle the data streams of your choice.

Examples

Some trivial examples that might give you a starting point are provided at https://github.com/remakeelectric/integration-examples

Simply searching for "MQTT" and your favourite programming language will give you examples and ideas. many

Lua

All of the existing service daemons for the gateway can be run as MQTT IN just as well as OUT, by simply changing what topics and broker
addresses are used. This is actually how they are normally developed.

Python

Projects like offer a lot of flexibility out of the box. See mqttwarn https://github.com/jpmens/mqttwarn

MQTTHTTP post from the gateway

Not covered at this point. This is largely the same as MQTT bridge out, but your software service simply makes HTTP requests itself, rather than
republishing your messages back to the MQTT broker.

See for an example service that does this.https://github.com/remakeelectric/owrt_pub_feeds/tree/master/output-dexma

http://www.mosquitto.org
https://github.com/remakeelectric/integration-examples
https://github.com/jpmens/mqttwarn
https://github.com/remakeelectric/owrt_pub_feeds/tree/master/output-dexma

PUBLIC - status/local/json/alert/{new,expired}
Introduction
Availability
Configuration
MQTT Topics
JSON Root Elements
JSON breaker reading elements
Examples

Introduction

The gateway monitors the live stream of readings and, in conjunction with the cabinet electrical model, monitors for overload conditions on all
breakers. The alert is posted as a json message on MQTT topics, free for further integration, via MQTT bridges, or listening to these messages
directly.

Availability

Version Availability

2.10 or later AVAILABLE

Configuration

The alerting engine works directly from the . If breaker sizes have not been set, the alerting engine cannot operate. Noelectrical cabinet model
further configuration is currently necessary. Alerts are raised when the current on a circuit reaches 100% of nominal, and have maintained this
state for more than 10 seconds.

MQTT Topics

When an alert condition is detected, and the hold time has been met, a message is published to . When thestatus/local/json/alert/new
alert condition passes, and the hold time has been met, a message is published to with the samestatus/local/json/alert/expired
sequence id. An aggregate state message is also published on changes, see status/local/json/alert/state documentation

JSON Root Elements

Field Type Description

label string User entered label for this breaker

sequence numeric the number in this particular sequence. Alerts are repeated with a backoff interval, this helps you
identify new/old alerts

sequenceid string UUID identifying this particular alert event. Both new and expiry messages will use the same
sequenceid

version numeric always 3

type string always "current"

nominal_limit numeric the threshold used that caused this breaker to register an alert

timestart_ms numeric timestamp in milliseconds since the epoch when this alert first went over threshold

timeend_ms numeric timestamp in milliseconds since the epoch when this alert first went under threshold. Only valid in
expiry messages

last_reading array of breaker reading
elements

objects indicating the most recent received values for the configured breaker.

JSON breaker reading elements

Field Type Description

deviceid string represents the device that this breaker reading is from

reading numeric channel number this reading is from. In conjunction with deviceid, uniquely identifies the reading point

value numeric value at last reading

timestamp_ms numeric timestamp in milliseconds since the epoch when the last reading was collected

Examples

New, multiphase breaker.

{
 "last_reading": [
 {
 "deviceid": "4ECDD765A62E",
 "value": 28.15,
 "timestamp_ms": 1540392509445,
 "reading": 3
 },
 {
 "deviceid": "4ECDD765A62E",
 "value": 28.45,
 "timestamp_ms": 1540392509445,
 "reading": 4
 },
 {
 "deviceid": "4ECDD765A62E",
 "value": 29.12,
 "timestamp_ms": 1540392509445,
 "reading": 5
 }
],
 "sequenceid": "a2c3cc5f-b9b8-440a-ab91-58708260f531",
 "sequence": 2,
 "label": "Some breaker label",
 "version": 3,
 "timestart_ms": 1540392481360,
 "type": "current",
 "nominal_limit": 16
}

PUBLIC -
status/local/json/interval/<X>min/<deviceid>/<readingkey>/<cha
nnel> - interval statistics

Availability
Introduction
MQTT topics and variables
Message format

JSON Root Keys
Examples
Bandwidth

Availability

Gateway version Status

2.8.1 or earlier NOT IMPLEMENTED

2.10 or later AVAILABLE

Introduction

As part of the standard API, the gateway provides some aggregate interval statistics. For many integration purposes, the live streams are simply
far too much data, and these interval topics allow picking and choosing what data you really want. No metadata about devices is provided here.
The metadata subtopics of the live stream are largely static enough.

MQTT topics and variables

Four intervals are maintained concurrently. 1 minute, 5 minute, 15minute and hourly. You can mix and match the use of these topics in your own
applications as you prefer.

Topic portion description

X The interval. One of a fixed set of 1,5,15,60

deviceid The serial of the modbus device this data has been collected from

readingkey The same reading key as used in the live streams.

See and for more informationPUBLIC - status/local/text/device/# PUBLIC - status/local/json/device/# - Live reading data

channel The same optional sub channel as used in the live streams

Message format

Each topic will contain a single json message, published retained, so that it is always available to new subscribers. All timestamps are in
milliseconds since the linux epoch, as used throughout the gateway.

JSON Root Keys

Key type description

n number number of samples that contributed to this dataset

max number maximum value of datapoint in interval

max_ts number timestamp of max reading

min/min_ts as max

mean number raw average of samples

stddev number raw stddev of all samples

first number raw value at start of interval

last number raw value at end of interval

ts_start number timestamp of start of interval

ts_end number timestamp of end of interval

Examples

Topic: status/local/json/interval/5min/ABCDFACECAFE/current/4

{
 "last": 40,
 "max": 42,
 "ts_start": "ts of start of window in millis",
 "first": 39,
 "min": 12,
 "mean": 30,
 "stddev": 3.3,
 "min_ts": "ts_in_millis",
 "ts_end": "ts of start of window in millis",
 "max_ts": "ts_in_millis",
 "n": 25
}

Device failing for entire window. We still publish an aggregate, but with 0 samples. If a device is from the configuration, you will simplyremoved
stop receiving messages for that device.

{
 "ts_start": "ts of start of window in millis",
 "ts_end": "ts of start of window in millis",
 "n": 0
}

Bandwidth

Figure roughly 340 bytes per message or so. Will be more or less, given size of variables, and json encoding, but ballpark. Calculator attached
that lets you choose interval in minutes, and number of bars/meters

PUBLIC - status/local/json/cabinet/<deviceid> Cabinet models
Availability
Introduction

MQTT Topics and retained flags.
JSON Root Elements
JSON logical breaker objects
JSON breaker reading point objects

Examples version 0.3
General three phase meter
12 Pin eTactica Power Bar with mixed sizes and both single and three phase breakers

Historical information
Examples Version 0.2

Example single phase "bar" style device

Availability

Gateway version Cabinet Model format version

2.2 or later (March 2018) 0.3 AVAILABLE

2 2.2 0.2 DEPRECATED BUT COMPATIBLE

Introduction

To ensure that third party data sinks have sufficient metadata to interpret live data streams, we added "cabinet editing" to the gate UI in v2. To
make this responsive, we post each portion of the cabinet model as retained messages, so any consumer can subscribe and instantly receive the
current model, and also be notified whenever the user changes them, without having to specifically request them. It's important to note that this
metadata is only captured for parameters. It does not attempt to allow arbitrary labelling of datapoints, only the primary metadata ofelectrical
breaker size and phase assignments that can only be captured by an on site technician.

MQTT Topics and retained flags.

The <deviceid> in the topic is the serial number of the device that this model document describes. Device IDs are unique within a gateway, but
there is no guarantee of global uniqueness. All messages on these topics are retained, and given the importance of their metadata, these are
even stored persistently even when no SD card is installed, on disk at /etc/remake.d/cabinet_model_cache. On bootup, these files are read from
disk and republished for gateways that don't have mqtt persistence enabled via the SD card.

JSON Root Elements

Field type description

branches array Array of logical breaker objects

type constant
string "profile"

Used to help identify this message without having the topic attached.

cabinet string user provided cabinet name that all of these breakers belong to

version number presently, the value 0.3

validated boolean When present, means any required internal actions have been completed. (Such as assigning phases on
power bars)

You can normally ignore this field, the user provided metadata doesn't change.

JSON logical breaker objects

Field type description

ampsize number The user supplied numeric ampere size for this breaker

label string The user supplied string label of this breaker

points array an array of breaker reading point objects. Normally either 1 element or 3 elements long.

Lists the physical reading points that make up this logical breaker.

JSON breaker reading point objects

These are simple tuples describing the phase and channel/reading point that make up a breaker. The mix of zero based and one based
numbering is an unfortunate legacy. We're sorry about that.

Field type description

phase number One based phase assignment for this point, eg, 1, 2, 3

reading number Zero based channel index on this device, eg 0, 11

Examples version 0.3

General three phase meter

{
 "deviceid": "110083A",
 "type": "profile",
 "version": 0.3,
 "branches": [
 {
 "points": [
 { "phase": 1, "reading": 0 },
 { "phase": 2, "reading": 1 },
 { "phase": 3, "reading": 2 }
],
 "ampsize": 16,
 "label": "KARLO1"
 }
],
 "validated": true,
 "cabinet": "other cabinet"
}

12 Pin eTactica Power Bar with mixed sizes and both single and three phase breakers

{
 "deviceid": "2ACA65EBB19A",
 "type": "profile",
 "version": 0.3,
 "branches": [
 {
 "points": [{"phase": 1, "reading": 0 }],
 "ampsize": 16,
 "label": "9a/1"
 },
 {
 "points": [{"phase": 2, "reading": 1 }],
 "ampsize": 16,
 "label": "9a/2"
 },
 {
 "points": [
 { "phase": 3, "reading": 2 },

Topic: status/local/json/cabinet/110083A

Topic: status/local/json/cabinet/2ACA65EBB19A

 { "phase": 1, "reading": 3 },
 { "phase": 2, "reading": 4 }
],
 "ampsize": 63,
 "label": "BigTriple"
 },
 {
 "points": [{ "phase": 3, "reading": 5 }],
 "ampsize": 16,
 "label": "9a/4"
 },
 {
 "points": [
 { "phase": 1, "reading": 6 },
 { "phase": 2, "reading": 7 },
 { "phase": 3, "reading": 8 }
],
 "ampsize": 8,
 "label": "little boy"
 },
 {
 "points": [{ "phase": 1, "reading": 9 }],
 "ampsize": 16,
 "label": "9a/6"
 },
 {
 "points": [{ "phase": 2, "reading": 10 }],
 "ampsize": 16,
 "label": "custom single"
 },
 {
 "points": [{ "phase": 3, "reading": 11 }],
 "ampsize": 16,
 "label": "9a/8"
 }
],
 "validated": true,
 "cabinet": "my awesome cabinet"

}

Historical information

Examples Version 0.2

Version 0.2 is identical, but every single point entry includes the in addition to the phase and reading keys. This was a carryover from andeviceid
earlier format that contained every single breaker in a single json document and allowed theoretically creating a three phase breaker across two
different physical devices. This was never used in practice, and the complexity and redundance was dropped.

Example single phase "bar" style device

Topic: status/local/json/cabinet/2ACA65EBB19A

{
 "branches": [
 {
 "ampsize": 22,
 "label": "Q32.7",
 "points": [{ "phase": 1, "reading": 6, "deviceid":
"2ACA65EBB19A" }]
 },
 {
 "ampsize": "22",
 "label": "Q32.1",
 "points": [{ "phase": 1, "reading": 0, "deviceid":
"2ACA65EBB19A" }]
 },
 {
 "ampsize": "22",
 "label": "Q32.2",
 "points": [{ "phase": 2, "reading": 1, "deviceid":
"2ACA65EBB19A" }]
 },
 {
 "ampsize": "22",
 "label": "Q32.3",
 "points": [{ "phase": 3, "reading": 2, "deviceid":
"2ACA65EBB19A" }]
 },
 {
 "ampsize": "22",
 "label": "Q32.4",

Example single phase "bar" style device

 "points": [{ "phase": 1, "reading": 3, "deviceid":
"2ACA65EBB19A" }]
 },
 {
 "ampsize": "22",
 "label": "custom5",
 "points": [{ "phase": 2, "reading": 4, "deviceid":
"2ACA65EBB19A" }]
 },
 {
 "ampsize": "22",
 "label": "Q32.6",
 "points": [{ "phase": 3, "reading": 5, "deviceid":
"2ACA65EBB19A" }]
 },
 {
 "ampsize": "22",
 "label": "Q32.8",
 "points": [{ "phase": 2, "reading": 7, "deviceid":
"2ACA65EBB19A" }]
 },
 {
 "ampsize": "22",
 "label": "Q32.9",
 "points": [{ "phase": 3, "reading": 8, "deviceid":
"2ACA65EBB19A" }]
 },
 {
 "ampsize": "22",
 "label": "Q32.10",
 "points": [{ "phase": 1, "reading": 9, "deviceid":
"2ACA65EBB19A" }]
 },
 {
 "ampsize": "22",
 "label": "Q32.11",
 "points": [{ "phase": 2, "reading": 10, "deviceid":
"2ACA65EBB19A" }]
 },
 {
 "ampsize": "22",
 "label": "Q32.12",
 "points": [{ "phase": 3, "reading": 11, "deviceid":
"2ACA65EBB19A" }]
 }
],
 "cabinet": "mycab",
 "version": 0.2,
 "type": "profile"
}

PUBLIC - status/local/json/device/# - Live reading data
Availability
Introduction
Topics and retained flags
Message Format

SenML block
HWC block

Examples
Normal, successful readings
Failure / error messages

Bandwidth

Availability

Gateway version

version 2.0+ AVAILABLE

Introduction

This stream is the "full" live stream, the original and primary method of integration. See also: Pros and consPUBLIC - status/local/text/device/#
are outlined on A single message is published for every reading of a device, and the message is rich,Integration Guide for 3rd Parties (DRAFT)
with all information known at that time. There are two major portions, "senml" which covers the readings themselves, and "hwc" which is the
"hardware configuration" information block, and covers information about device. As the "original" live stream format, there are some
redundancies and legacy data here.

Topics and retained flags

No messages in this space are published as retained. Nominally, each device is read every two seconds, and each message contains all known
information, so clients are simply expected to wait for the next message. Device IDs are provided by the device plugins, and are required to be
unique within a gateway at least, but not necessarily globally unique.

Device Topic

Succesfully probed status/local/json/device/<deviceid>

Configured, but not yet probed status/local/json/device

Message Format

At the root level, the following keys can be found

Key Meaning Example

timestamp_ms milliseconds since unix epoch 1537443066583

deviceid redundant copy from topic. Included so that messages can be completely standalone without
further metadata

E643E5EE2391

senml A SenML block, see below

hwc A HardWare Configuration block, see below

SenML block

The SenML block is based on Note that the SenML draft (it's still only a draft) has moved inhttps://tools.ietf.org/html/draft-jennings-senml-10
different directions, and this is INCOMPATIBLE with the current draft: https://tools.ietf.org/html/draft-ietf-core-senml-13

The messages published by the gateway just use a simple subset of the functionality available. With reference to https://tools.ietf.org/html/draft-je
nnings-senml-10#section-6

SenML root elements Usage on Gateway Example

bn always provided. Always "deviceid/"

Note the trailing /, this allows direct concatenation with parameter entry names to form mqtt topics

E643E5EE2391/

bt Always provided. This is the time of the reading, in since the unix epoch.milliseconds

Note that the draft specified this in , which we felt was too coarse.seconds

1537443769351

bu never provided

ver never provided

e always provided, with at least one element.

SenML parameter
entries

Usage on Gateway Example

n always provided. Predefined type names documented in PUBLIC - SENML name keys -
registry of uses

frequency,
current/4

v always provided. 49.999

u always provided. Wh, Hz

t never provided

sv never provided

bv never provided

t never provided (all readings are from the same time, see root level "bt"

ut never provided

HWC block

The ard are onfiguration block contains mostly static information about the device itself. It's quite redundant if you're exporting this out of theH W C
gateway, but makes for simple integration locally as each message has everything you need to know.

json key json
type

Meaning example

slaveId number Decimal Modbus unit address 146

deviceid string Another copy of the device id

lastPollTime number milliseconds since unix epoch when device was last read.

Not the same as the timestamp_ms, which is when thisexactly
status message was created, but normally very close.

1537443084804

mbDevice string Modbus connection name local

vendor number (optional) Numeric vendor code, provided by eTactica devices
only.

21069

https://tools.ietf.org/html/draft-jennings-senml-10
https://tools.ietf.org/html/draft-ietf-core-senml-13
https://tools.ietf.org/html/draft-jennings-senml-10#section-6
https://tools.ietf.org/html/draft-jennings-senml-10#section-6

vendorName string String Vendor name eTactica, Frer, Siemens

product number (optional) Numeric product code, provided by eTactica devices
only.

18245

productName string Product name, as complete as device plugins can provide "CE4DMID01", "EM21 Compatible"

pluginName string filename of the plugin in use for reading this device etactica_eb-es.lua

pluginSource string whether a system or user plugin is being used system or user

pluginCategory string Category of plugin. This only affects the dropdowns in the UI electricity

typeOfMeasurementPoints string Fixed string, "generic" only for legacy compatibility. generic

firmwareVersion object Provides a firmware version. Keys:

"major" (number)

"minor" (number)

"dirty" (boolean) (Dirty is intended to indicate private software
builds, you should never see this set to true!)

{
 "major": 4,
 "minor": 12,
 "dirty": false
}

error object (optional) Only present if the device is having read problems.
Keys:

"status" (number) a numeric code, direct mapping to
"meaning"

"meaning" (string) a brief explanation of why the last reading
failed.

"failureCount" (number) number of failed readings in a row.

{
 "status": 3,
 "meaning":
"Modbus protocol",
 "failureCount":
3
},

Examples

Normal, successful readings

{
 "timestamp_ms": 1446548186288,
 "deviceid": "6B768BF56888",
 "senml": {
 "e": [
 { "n": "current/1", "v": 0, "u": "A" },
 { "n": "current/2", "v": 0, "u": "A" },
 { "n": "current/3", "v": 0, "u": "A" },
 { "n": "current/4", "v": 0, "u": "A" },
 { "n": "current/5", "v": 0, "u": "A" },
 { "n": "current/6", "v": 0, "u": "A" },
 { "n": "current/7", "v": 0, "u": "A" },
 { "n": "current/8", "v": 0, "u": "A" },
 { "n": "current/9", "v": 0, "u": "A" },
 { "n": "temp", "v": 28.4, "u": "Cel" }
],
 "bn": "6B768BF56888/",
 "bt": 1446548186288
 },
 "hwc": {
 "slaveId": 136,
 "mbDevice": "local",
 "lastPollTime": 1446548186288,
 "deviceid": "6B768BF56888",
 "vendor": 21069,
 "product": 16964,
 "vendorName": "ReMake Electric",
 "pluginName": "etactica_eb-es.lua",
 "pluginSource": "system",
 "pluginCategory": "electricity",
 "typeOfMeasurementPoints": "generic",
 "numberOfMeasurementPoints": 9,
 "firmwareVersion": {
 "major": 3,
 "minor": 10,
 "dirty": false
 }
 }
}

eTactica Current Bar - Topic status/local/json/device/6B768BF56888

{
 "timestamp_ms": 1513613581197,
 "deviceid": "0004A3ED253F",
 "senml": {
 "e": [
 { "n": "frequency", "v": 50, "u": "Hz" },
 { "n": "cumulative_wh", "v": 356152.35600000003, "u": "Wh"
},
 { "n": "cumulative_varh", "v": 42708.190999999999, "u":
"VArh" },
 { "n": "current/1", "v": 9.6660000000000004, "u": "A" },
 { "n": "volt/1", "v": 225.13999999999999, "u": "V" },
 { "n": "pf/1", "v": 0.96999999999999997 },
 { "n": "current/2", "v": 0, "u": "A" },
 { "n": "volt/2", "v": 226.33600000000001, "u": "V" },
 { "n": "pf/2", "v": 1 },
 { "n": "current/3", "v": 0, "u": "A" },
 { "n": "volt/3", "v": 229.49100000000001, "u": "V" },
 { "n": "pf/3", "v": 1 },
 { "n": "temp", "v": 32.420000000000002, "u": "Cel" }
],
 "bn": "0004A3ED253F/",
 "bt": 1513613581197
 },
 "hwc": {
 "slaveId": 63,
 "mbDevice": "local",
 "lastPollTime": 1513613581197,
 "deviceid": "0004A3ED253F",
 "vendor": 21069,
 "product": 18238,
 "vendorName": "eTactica",
 "pluginName": "etactica_em.lua",
 "pluginSource": "system",
 "pluginCategory": "electricity",
 "typeOfMeasurementPoints": "generic",
 "numberOfMeasurementPoints": 3,
 "firmwareVersion": {
 "major": 3,
 "minor": 20,
 "dirty": false
 }
 }
}

eTactica EM (all mains meters) Topic: status/local/json/device/0004A3ED253F

Failure / error messages

You can distinguish between failing unknown and failing known. Failing known will have a proper field, but will have the blockdeviceid error
present. Failing unknown will have no deviceid in the topic, and no deviceid in the hwc block.

{
 "timestamp_ms": 1537447210855,
 "message": "Failed to respond to 28 selected probes",
 "hwc": {
 "slaveId": 240,
 "mbDevice": "local",
 "lastPollTime": 1537447210353,
 "error": {
 "status": 6,
 "meaning": "Unrecognized",
 "failureCount": 1
 }
 }
}

Example failing, but known. (Might be permanent, might be intermittent)

Failing, unknown device. Topic: status/local/json/device

{
 "timestamp_ms": 1513614058793,
 "hwc": {
 "slaveId": 109,
 "mbDevice": "local",
 "lastPollTime": 1513614058793,
 "error": {
 "status": 7,
 "meaning": "No SPI",
 "failureCount": 6378
 },
 "deviceid": "A4C2B38FC86D",
 "vendor": 21069,
 "product": 18245,
 "vendorName": "eTactica",
 "pluginName": "etactica_em.lua",
 "pluginSource": "system",
 "pluginCategory": "electricity",
 "typeOfMeasurementPoints": "generic",
 "numberOfMeasurementPoints": 3,
 "firmwareVersion": {
 "major": 3,
 "minor": 21,
 "dirty": false
 }
 }
}

Bandwidth

This message format is quite verbose, and the repeated publishing of the hwc (hardware config) blocks in message means you probably every do
 want to feed this stream directly to your cloud service. Attached is a little calculator to help you estimate data usage from the MQTT streamn't

alone

Failing, but known device Topic: status/local/json/device/A4C2B38FC86D

 As an example, a single mains meter, plus eight 12 channel power bars can generate
around a GigaByte per DAY

PUBLIC - status/local/text/device/#

Availability

Introduction

MQTT device ids and retained flag

Topics

Readings Topics

Defined reading-keys

Metadata Topics

Standard Metadata

Optional Metadata

Examples

Bandwidth

Availability

Gateway version

less than 2.8 UNAVAILABLE

2.8 OPTIONAL Must be enabled manually with "uci set mlifter.remake.include_simple_text=1"

3+ AVAILABLE On by default, but can be disabled.

Introduction

This stream is an alternative to the "full" live stream, offering an alternative method of integration. Pros and cons are outlined on Integration Guide
for 3rd Parties (DRAFT)

For some integrations, particularly simple third parties and webhooks, accessing a single value on a single topic can be much simpler than
extracting individual elements from the rich json object. Note, if you are planning on listening to the entire stream, the JSON stream is in almost
all cases more cpu efficient.

MQTT device ids and retained flag

Devices that have been sucessfully probed will publish all values as retained, using the device id as their root topic element. This means that you
will receive the latest values for all topics immediately upon connection, without having to wait for the next publish. Devices that have beennot

probed successfully will publish as retained, and will use a pseudo device id of not "unknown@<modbus connection id>:<modbus unit
This allows you to follow devices still being probed, if desired, but doesn't pollute any retained topics with pseudo devices after theyaddress>".

finish probing.

deviceid This is the serial number of a modbus device. Where devices don't provide a serial number, device plugins provide a pseudo
serial such as "productname-modbusaddress"

These deviceids are unique within a gateway, but there's no particular guarantees on global uniqueness.

modbus
connection id

eg "local", This is the "Connection name" value entered when configuring (rmeote) modbus devices

modbus unit
address

as a decimal number, eg, 145

When data collection restarts, (after a configuration change, or device restart) retained topics under status/local/text/device/# will be cleared byall
publishing a null message. This is to avoid dangling topics for devices that are no longer configured. Your application should be prepared to
accept these null messages, and you can use them to track changes in config yourself.

Topics

Readings Topics

The general form for readings is status/local/text/device/<deviceid>/<reading-key>/<channelnumber>

This mirrors the basic topic structure of the json formatted live reading stream. See withPUBLIC - status/local/json/device/# - Live reading data
the third position indicating the data format.

Readings are always published.

Defined reading-keys

Not all devices will or can provide all of these keys. But if they can, they should always use the same key. Precision will be as provided by the
device being read, but units will always be consistent.

These are the keys as used in the JSON formatted messages. See also same PUBLIC - SENML name keys - registry of uses

reading-key has channel number? Unit Meaning Example

temp optional °C without a channel number is Device internal
temperature. Otherwise external channels

37.4

frequency no Hz mains frequency 49.98

current yes A Current on channel 12.5

volt yes V Voltage on channel 229.4

pf yes - power factor on channel.

Defined that positive is import, negative is export.
leading/lagging is ignored.

0.98

cumulative_wh no Wh Sum of energy import on all channels less sum of
energy export on all channels

6742129

cumulative_varh no varh Sum of reactive import plus sum of reactive export 234122

wh_in yes Wh imported energy for a specific channel. 12312.234

flownet optional m³ cumulative sum of flow 23432

flowrate optional m³/hr rate of flow. period of integration not defined 2.45

voltage_supply optional V voltage of power supply. 3.31

temp_flow optional °C temperature of flowing fluid 85.4

pulse_count yes ticks raw pulse count value 1234543

Metadata Topics

Metadata is published on a subtopic to make it a little easier to follow: status/local/text/device/<deviceid>/meta/<meta-reading-
key>

Metadata is only published when it has changed, but is published retained, so you will receive all metadata when you first connect.

Standard Metadata

meta-reading-key Meaning example

timestamp_ms unix epoch time (in milliseconds, ie, *1000) when this device was last read.

Decode with $ date -d @1537361330.704 => Wed Sep 19 12:48:50 GMT
2018

1537361330704

mbAddress Decimal Modbus unit address 146

mbDevice Modbus connection name local

vendor String Vendor name eTactica, Frer, Siemens

product Product name, as complete as device plugins can provide "CE4DMID01", "EM21
Compatible"

pluginName filename of the plugin in use for reading this device etactica_eb-es.lua

pluginSource whether a system or user plugin is being used system or user

pluginCategory Category of plugin. This only affects the dropdowns in the UI electricity

firmwareVersion free text provided by the plugin. 4.12M, 1.0, 2016.12-abc

error A (brief) textual explanation of why the last reading has failed. (Cleared when no
error)

"No SPI", "Modbus protocol", etc

errcode numeric code corresponding to the error string (Cleared when no error) 3, 7

failCount number of failed readings in a row (Cleared when no error)

Optional Metadata

meta-reading-key Meaning example

vendorCode eTactica magic number 21069

productCode eTactica magic number for this particular product. Can be used to identify hardware revisions 16975

Examples

$ mosquitto_sub -t "status/local/text/device/E643E5EE2391/#" -v -h
192.168.1.163
status/local/text/device/E643E5EE2391/meta/timestamp_ms 1537363413733
status/local/text/device/E643E5EE2391/meta/mbAddress 145
status/local/text/device/E643E5EE2391/meta/mbDevice local
status/local/text/device/E643E5EE2391/meta/vendorCode 21069
status/local/text/device/E643E5EE2391/meta/productCode 18245
status/local/text/device/E643E5EE2391/meta/vendor eTactica
status/local/text/device/E643E5EE2391/meta/pluginName etactica_em.lua
status/local/text/device/E643E5EE2391/meta/pluginSource system
status/local/text/device/E643E5EE2391/meta/pluginCategory electricity
status/local/text/device/E643E5EE2391/meta/firmwareVersion 4.12
status/local/text/device/E643E5EE2391/frequency 49.984
status/local/text/device/E643E5EE2391/cumulative_wh -43787.9
status/local/text/device/E643E5EE2391/cumulative_varh 67458.7
status/local/text/device/E643E5EE2391/current/1 0
status/local/text/device/E643E5EE2391/current/2 0
status/local/text/device/E643E5EE2391/current/3 0
status/local/text/device/E643E5EE2391/volt/1 237.258
status/local/text/device/E643E5EE2391/volt/2 237.794
status/local/text/device/E643E5EE2391/volt/3 239.575
status/local/text/device/E643E5EE2391/pf/1 0
status/local/text/device/E643E5EE2391/pf/2 0
status/local/text/device/E643E5EE2391/pf/3 0
status/local/text/device/E643E5EE2391/temp 34.98
^C

eTactica Mains meter, full readings

status/local/text/device/E643E5EE2391/meta/timestamp_ms 1537363526707
status/local/text/device/E643E5EE2391/frequency 50.056
status/local/text/device/E643E5EE2391/cumulative_wh -43787.9
status/local/text/device/E643E5EE2391/cumulative_varh 67461.3
status/local/text/device/E643E5EE2391/current/1 0
status/local/text/device/E643E5EE2391/volt/1 237.684
status/local/text/device/E643E5EE2391/pf/1 0
status/local/text/device/E643E5EE2391/current/2 0
status/local/text/device/E643E5EE2391/volt/2 238.224
status/local/text/device/E643E5EE2391/pf/2 0
status/local/text/device/E643E5EE2391/current/3 0
status/local/text/device/E643E5EE2391/volt/3 240.009
status/local/text/device/E643E5EE2391/pf/3 0
status/local/text/device/E643E5EE2391/temp 35.11

Bandwidth

While this stream contains no repeated elements as in the JSON stream, it's still relatively high bandwidth. The bandwidth is primarily due to the
rather long topic names. With the base topic plus the datapoint names, the topic + reading is around 110 bytes per metric. If you are bridging this
topic outbound, you can strip off the leading portion, and save ~24 bytes per metric but it will always be rather voluminous. A rough calculator is
attached below

PUBLIC - status/local/json/alert/state

Introduction

This is a continually updated summary topic, containing the current state of all alerts. See for thePUBLIC - status/local/json/alert/{new,expired}
general overview of the alerts. This topic is generally used for status screens or general display, not as an integration point.

eTactica Mains meter, subsequent readings

Availability

Version Availability

2.10 or later AVAILABLE

MQTT Topic

Whenever new information about the state of an active alert is received (typically, on every single device read, nominally every 2 seconds) statu
 receives a new retained message. s/local/json/alert/state

JSON Elements

The root object is a dictionary, where the keys are the nominal "breaker id" and the values are the same format as used in the new/expired
messages. See for full details on this.PUBLIC - status/local/json/alert/{new,expired}

"breaker id" format

This is an internal unique identifier for a single/multi phase breaker. It is used to make sure that the dictionary of alerts doesn't containonly
duplicates. The format is the device identifier, appended with the channel numbers that make up the breaker.

Example Description

"2ACA65EBB19A-5" Channel 5 on the device 2ACA65EBB19A

"2ACA65EBB19A-4-5-6" Channels 4,5 and 6 on device 2ACA65EBB19A

Example messages

An example of presently active alerts on both a single and three phase breaker.

{
 "2ACA65EBB19A-4-5-6": {
 "last_reading": [
 {
 "deviceid": "2ACA65EBB19A",
 "value": 0,
 "timestamp_ms": 1544461054195,
 "reading": 4
 },
 {
 "deviceid": "2ACA65EBB19A",
 "value": 58.7,
 "timestamp_ms": 1544461054195,
 "reading": 5
 },
 {
 "deviceid": "2ACA65EBB19A",
 "value": 0,
 "timestamp_ms": 1544461054195,
 "reading": 6
 }
],
 "type": "current",
 "version": 3,
 "label": "breaker_label_from_cabmodel",
 "timestart_ms": 1544461040074,
 "nominal_limit": 16,
 "sequence": 2,
 "sequenceid": "38ffae95-924a-40b9-85d6-83510315557c"
 },
 "CAFEFACE0001-2": {
 "last_reading": [
 {
 "deviceid": "CAFEFACE0001",
 "value": 56.8,
 "timestamp_ms": 1544461031412,
 "reading": 2
 }
],
 "type": "current",
 "version": 3,
 "label": "label_from_cabinet_model",
 "timestart_ms": 1544455976195,
 "nominal_limit": 16,
 "sequence": 2,
 "sequenceid": "c1592268-f7b5-4f44-8c43-e5c51745470c"
 }
}

PUBLIC - SENML name keys - registry of uses

IN USE
PROPOSED / niche

IN USE

Name Standard Unit Notes Where

current/%d A Current (in Amps) on channel %d EB/EM

volt/%d V Voltage (in volts) on channel %d EM

pf/%d pf (only to avoid
bugs on ET2)

Power factor between -1 and 1, based on direction of active
power.

(No indication of leading/lagging)

EM.

EB when reporting to Etactica2

pulse_count/%d Raw ticks on an input. No interpretation ER, 3rd party pulse meters

temp and
temp/%d

Cel Temperature. Could be on cpu temperature, or environmental. EB2+, EM2+,

temp_internal Cel Internal device temperature CS Instruments VA5xx plugin

wh_in/%d Wh Active import Watt hours EB

cumulative_wh Wh Total Active Import - Total Active Export Watt hours (signed) EM

cumulative_varh Varh Total Lagging Reactive + Total Leading Reactive EM

frequency Hz Frequency of mains, not normally declared which phase, or
whether average of all phases or not

EM, EB

flownet m3 import - export consumption of a volume, normally water,
analogous to cumulative_wh

Water meters, both ultrasonic and some OBIS
meters, gas flow meters

flowrate m3/h flow rate, non specified integration time Water meters, both ultrasonic and some OBIS
meters, gas flow meters

velocity m/s CS Instruments VA5xx plugin

voltage_supply V power supply voltage, where measured CS Instruments VA5xx plugin

PROPOSED / niche

Name Standard Unit Notes Where

output/%d binary state of a digital output GC5 SFAR modules

input/%d binary state of a digital input GC5 SFAR modules

temp_gas Cel Temperature of measured flow

CAUTION Will probably be renamed to

temp_flow

CS Instruments VA5xx plugin

Connecting to Gateway and Simple Setup
This is a description on how to connect to the eTactica Gateway (EG) and how to do a simple setup where a Wizard will guide you through all the
steps.

Do go making up new names here just as you see fit. The registry of names is how partners can interpret our data!NOT

How to Get Connected to the eTactica Gateway

Most commonly, this is done by WiFi. By default every Gateway comes with an open WiFi interface (wireless hotspot) for initial configuration. The
SSID for the wireless hotspot is always where -xxxxxx is a unique number for each Gateway. "eTactica eg-xxxxxx",

Alternatively you connect by using your Ethernet connection.

Connection via WiFi

Step 1 - Connect to WiFi hotspot

Use the normal operating system method for connecting to a new wireless hotspot.

On Windows it looks something like this:

and very similar on Linux:

Step 2 - Visit the admin console website

If you have connected via WiFi, the URL to the administration console is always . Type this IP address into your web-browserhttp://192.168.49.1
to get access.

Connection via Ethernet

Windows

If the device has been connected to your existing Ethernet network, as is usual, you can find the device in Windows Explorer -> Network -> Other
, as shown below.devices

Simply double click the name of the device you wish to connect to and you will automatically be directed to the admin console page of the
gateway, via your web-browser.

The name of the device shown here, will also match where -xxxxxx is a unique number for each device. "eTactica eg-xxxxxx",

http://192.168.49.1

OS X

On OS X, using the Safari Browser, you can visit " " and choose the entry for the matching device.Bookmarks->Bonjour Bookmarks

Note: you may need to enable browsing Bonjour Bookmarks first, see information at http://support.apple.com/kb/PH11848

Linux

On Linux there are different tools available for this kind of discovery, i.e. . You can use these tools to find your device and to the IPAvahi-discover
address (URL) it got assigned.

Once you have the IP address, you can enter it in your web-browser to access the admin console page of the gateway.

First Steps on the Connected Gate

Step 1 - Starting Wizard

You should see something like this:

http://support.apple.com/kb/PH11848

The wizard process helps you configure the following items:

The root password for your device
Networking and WiFi passwords
Configuring Modbus device list

If you want to configure these items manually, you may simply proceed as documented in the rest of this manual. However, the vast majority of
installations should be able to use the wizard.

Simply click "Start here".

Step 2 - Setting Root Password

The root password is used to log in to the web administration console for modifying any important settings. The root password also provides SSH
access to the device. You should, as always, use a good password here. Then click Configure Network for next step.

Step 3 - Configure Network

The recommended networking setup is to connect the Ethernet port to a regular DHCP network, as this requires the least configuration. Simply
leave the mark on DHCP and move down to the WiFi password.

In either case, you should also enter a WiFi password here. This will use WPA2/WPA2-PSK, the best available wireless security at this time. This
should be perfectly reasonable for most use cases, so choose a password and click Apply Network Settings.

Note:

If you wish to completely disable WiFi, that is of course possible, please see page # for instructions.

Until you have reconnected with any updated networking settings, it's simply too unsafe to turn off the WiFi this early in the configuration process.

Step 4 - Reconnect

Once you have entered your desired networking setup and WiFi password, the device networking will restart.

Depending on how you had originally connected to the device, you will most likely have to reconnect. The WiFi SSID will be shown, to help you
reconnect via WiFi. This may take a minute or two to restart, so please be patient.

Once you have reconnected to the device, you should see a new home page.

Step 5 - Device Configuration

Now that your basic networking and security is setup, it's time to proceed to configure your measurement devices.

Select "Next: Config Devices" and you will see the following screen.

Step 6 - Scan for Devices

If you have many devices and they are all ReMake Electric devices, you can attempt to scan for all connected devices.

You should always review scan results to be sure they match the devices you expected to be found. If you choose to scan, simply press the
"Scan" button.

The process will take about 30 seconds, as it scans all possible Modbus addresses looking for ReMake devices.

Note:

This only works for ReMake devices and only for devices that are properly connected.

Here is a screenshot of the process about half complete.

Note that it shows the Modbus address (slave ID) of the detected device, its device type, the unique serial string and an icon for each device
found to help you match against what you expected.

When the scan has finished you should see all connected ReMake devices.

Step 7 - Saving Configuration

If you had third party devices already in your list, or if you have eTactica devices you plan on connecting later that you had manually entered in
the previous step, then choose 2) " " to merge a combined device list. If you only care about the devices that wereMerge with existing address list
successfully scanned, you can choose 1) " " to replace any existing list with your scan results. Replace address list

If a device is not showing up in the scan list, please recheck it's wiring and power supply, and feel free to scan again.

When choosing either " " or " ", the configuration will be saved and applied. This will then takeReplace address list Merge with existing address list
you back to the home page of the administration web console, for final diagnostics of your configuration.

Hopefully you will see three green ticks that mean that everything is working correctly:

Devices - All devices from your configuration list are connected and recognized
eTactica Connection - Your network settings are correct and you are successfully connected to the eTactica web application
Time Synchronization - You have access to a NTP server that will secure correct timestamp of your measurement data

If you see red ticks on any of the above, you can go to the chapter to look for a solution to your problem.Troubleshooting

Step 8 - Completed

This completes your configuration, using the simple Wizard step by step guide.

Further Configuration

If you need to do some further configuration see the following chapters.

To edit most settings, you will need to be logged in and you will be presented with a screen like this:

The username is ALWAYS , and the password is whatever you have chosen.root

Configure remote MQTT bridges
The onboard MQTT message broker, mosquitto, allows configuring multiple remote bridges to send/receive topic trees to an external broker. The
UI provides some limited support for configuring these. For full details and more information you are advised to consult the strongly mosquitto

. This mechanism is how data is sent to eTactica for instance.man pages

Step 1 - Connect to the Gateway

See Connecting to Gateway and Simple Setup

https://remake.atlassian.net/wiki/spaces/PD/pages/42697043/Troubleshooting
http://mosquitto.org/man/mosquitto-conf-5.html
http://mosquitto.org/man/mosquitto-conf-5.html

Step 2 - Go to Administration page

Click on "Administration"

Step 3 - Go to the mosquitto page

Choose Services->Mosquitto

Step 4 - Edit/Add/Remove bridges

Scroll down to the section labelled "Bridges" Each bridge section can be quite large. The "delete" button will remove an entire bridge section, use
caution! Click on "Add" near the bottom to create a new bridge.

You will be asked to login, if you haven't already done so. See Connecting to Gateway and Simple Setup

Please do modify the existing bridge configuration, it is used for sending data to eTactica. It is normally recreated on every reboot ifnot
it has been modified, but to avoid confusion, we recommend simply leaving it alone.

You can add as many extra bridges here as you like (you only need one bridge per remote server, the bridge configuration can map as many
topic trees as you like) The options here are a subset of those described in the . Please consult that manual for advice.mosquitto.conf man pages
 This configuration can be very open ended, including topic remapping and we cannot provide any concrete guidance here without more
information on a given client's particular needs. If a particular configuration file option is not exposed in the UI, please file a ticket with us and we
can get it added.

A simple example of sending the live readings stream to a third party broker is shown below.

Step 5 - Save settings

When you are happy with your settings, choose "Save and Apply", and the broker will restart with the new settings.

Connect to the Gateway's MQTT Message Broker as a client
The EG runs an MQTT message broker for integration. All live readings are published to the broker as they are collected, as well as any
generated alerts and configurations. If you wish to connect to the broker with your MQTT client software, you will need to at least allow external
access to the broker.

Step 1 - Connect to the Gateway

See Connecting to Gateway and Simple Setup

Step 2 - Go to Administration page

Click on "Administration"

http://mosquitto.org/man/mosquitto-conf-5.html

Step 3 - Go to the mosquitto page

Choose Services->Mosquitto

Step 4 - Uncheck "Disallow remote access to this broker"

You will be asked to login, if you haven't already done so. See Connecting to Gateway and Simple Setup

Step 5 - Save settings

Choose "Save and Apply"

You should now be able to connect to the Gateway's MQTT broker using any MQTT client software, provided you have open network access to
the device. We recommend mosquitto (see), but you can find many more options at http://mosquitto.org/download/ https://github.com/mqtt/mqtt.g
ithub.io/wiki/tools

Listen to all messages published on the gateway
$ mosquitto_sub -h <gateway_ip_address> -t '#'

Listen to messages that are sent to eTactica
$ mosquitto_sub -h <gateway_ip_address> -t "power/#"

Listen to the live data stream (Same data as uses for the Channel
Monitor page)
$ mosquitto_sub -h <gateway_ip_address> -t "status/+/json/device/#"

Using the SDK to create your own applications

The settings here allow open access to your message broker by anyone with network access to your device. This may or may not be
acceptable in your environment. You are welcome to configure the mosquitto broker with alternative security mechanisms if you prefer,
but that is entirely at your discretion. Please see the mosquitto user manual for more information.

http://mosquitto.org/download/
https://github.com/mqtt/mqtt.github.io/wiki/tools
https://github.com/mqtt/mqtt.github.io/wiki/tools

Each release of the eTactica Gateway software includes the standard OpenWrt SDK which can be used for creating your own packages or
software for installation on your EG. but we'll give an example here.OpenWrt provides documentation for this process

In many cases, you can simply create some lua scripts and use the available libraries, without having to make any packages or compile any new
software. See XXXXX FIXME XXXX need to write this page with example snippets!

Requirements

Linux build environment
Decent understanding of compiling and software packaging

Copy the demo package feed to your build machine

Easiest is to clone the following github repository to your machine: https://github.com/remakeelectric/feed-demo

For the purpose of these steps, we're assuming you cloned the repository to /home/karlp/demos/feed-demo

Unpack the SDK and update feeds

For each release, look for the "SDK" tarball, eg http://packages.etactica.com/releases/gateway-2.8.1-release-1/targets/ar71xx/generic/openwrt-sd
k-18.06-SNAPSHOT-ar71xx-generic_gcc-7.3.0_musl.Linux-x86_64.tar.xz

After unpacking this, copy feeds.conf.default to feeds.conf, and add a line for your local custom feed. Eg, for this demo add the line

src-link custom /home/karlp/demos/feed-demo

Update the feeds to include packages from this feed

$./scripts/feeds update -a
.... lots of output
$./scripts/feeds install -a -p custom
Installing all packages from feed custom.
Installing package 'hello_world'
$

Note that our sample "hello_world" application was "installed". Installed simply means it's available to be selected for building. You can think of it
as "installed" into the SDK environment.

Build your application

By default, all "installed" applications will be built by simply running "make"

This guide is written for EG200, if you are using EG100, references to "ar71xx" should be replaced with "atheros"

https://wiki.openwrt.org/doc/howto/obtain.firmware.sdk
https://github.com/remakeelectric/feed-demo
http://packages.etactica.com/releases/gateway-2.8.1-release-1/targets/ar71xx/generic/openwrt-sdk-18.06-SNAPSHOT-ar71xx-generic_gcc-7.3.0_musl.Linux-x86_64.tar.xz
http://packages.etactica.com/releases/gateway-2.8.1-release-1/targets/ar71xx/generic/openwrt-sdk-18.06-SNAPSHOT-ar71xx-generic_gcc-7.3.0_musl.Linux-x86_64.tar.xz

$ make
#
configuration written to .config
#
 make[1] world
 make[2] package/compile
 make[3] -C /home/karlp/demos/feed-demo/hello_world compile
 make[2] package/index
$

If all goes well, you now have a new binary package suitable for installation on your EG in the "bin/packages/mips_24kc/custom"

Install and run your application

You can now copy your binary package to your device.

$ scp bin/packages/mips_24kc/custom/hellodemo_1-1_mips_24kc.ipk
root@192.168.255.74:/tmp
Warning: Permanently added '192.168.255.74' (RSA) to the list of known
hosts.
root@192.168.255.74's password:
hellodemo_1-1_mips_24kc.ipk
100% 2145 2.1KB/s 00:00
$

Now SSH to your device and install it, and you can test running it.

root@eg-037BCC:~# opkg install /tmp/hellodemo_1-1_mips_24kc.ipk
Installing hellodemo (1-1) to root...
Configuring hellodemo.
root@eg-037BCC:~# hello
Hello!
root@eg-037BCC:~# hello sdk-user
Hello demo: sdk-user
root@eg-037BCC:~#

Clearly, this only scratches the surface of what can be done. You could also build and install any existing OpenWrt package from any other feed
as well.

	Integration Guide for 3rd Parties (DRAFT)
	PUBLIC - status/local/json/alert/{new,expired}
	PUBLIC - status/local/json/interval/<X>min/<deviceid>/<readingkey>/<channel> - interval statistics
	PUBLIC - status/local/json/cabinet/<deviceid> Cabinet models
	PUBLIC - status/local/json/device/# - Live reading data
	PUBLIC - status/local/text/device/#
	PUBLIC - status/local/json/alert/state
	PUBLIC - SENML name keys - registry of uses
	Connecting to Gateway and Simple Setup
	Configure remote MQTT bridges
	Connect to the Gateway's MQTT Message Broker as a client
	Using the SDK to create your own applications

